NCERT Solutions for Class 8 Maths Chapter 12 Exponents and Powers (EX 12.1) Exercise 12.1

AI LIVE 2022

NCERT Solutions for Class 8 Maths Chapter 12 Exponents and Powers (EX 12.1) Exercise 12.1

Free PDF download of NCERT Solutions for Class 8 Maths Chapter 12 Exercise 12.1 (EX 12.1) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 8 Maths Chapter 12 Exponents and Powers Exercise 12.1 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails. Register Online for Class 8 Science tuition on Vedantu.com to score more marks in CBSE board examination. Vedantu is a platform that provides free CBSE Solutions (NCERT) and other study materials for students.

Do you need help with your Homework? Are you preparing for Exams?
Study without Internet (Offline)
Access NCERT Solution for Class 8 Maths Chapter 12- Exponents and Powers part-1
Book your Free Demo session
Get a flavour of LIVE classes here at Vedantu

Access NCERT Solution for Class 8 Maths Chapter 12- Exponents and Powers

Exercise 12.1

1. Evaluate

(i) \[{3^{ - 2}}\]

Ans: Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], to evaluate \[{3^{ - 2}}\].

Therefore,

$  {3^{ - 2}} = \dfrac{1}{{{3^2}}}  \\ $

$ \dfrac{1}{{{3^2}}} = \dfrac{1}{9} \\ $

Thus, the final value of \[{3^{ - 2}}\] is \[\dfrac{1}{9}\].


(ii) \[{\left( { - 4} \right)^{ - 2}}\]

Ans:

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],to evaluate \[{\left( { - 4} \right)^{ - 2}}\].

Therefore,

$ \Rightarrow  {\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{{{\left( { - 4} \right)}^2}}} \\  $

 $ \Rightarrow\dfrac{1}{{{{\left( { - 4} \right)}^2}}} = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} \\ $

Using property \[\left( { - a} \right) \times \left( { - a} \right) = {a^2}\]

$  \Rightarrow\dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} = \dfrac{1}{{{4^2}}} \\ $

$ \Rightarrow\dfrac{1}{{{4^2}}} = \dfrac{1}{{16}} \\ $

Thus, the final value of \[{\left( { - 4} \right)^{ - 2}}\] is \[\dfrac{1}{{16}}\].


(iii)  \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\]

Ans.

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], to evaluate \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\].

Therefore,

$ \Rightarrow{\left( {\dfrac{1}{2}} \right)^{ - 5}} = \dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} = \dfrac{1}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{1}{{{2^{ - 5}}}} = {2^5} \\ $

$ \Rightarrow{2^5} = 2 \times 2 \times 2 \times 2 \times 2 = 32 \\ $

Thus the final value of \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\] is 32.


2. Simplify and express the result in power notation with positive exponent.

(i) \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\]

Ans: To solve this problem, it has to use property \[{a^m} \div {a^n} = {a^{m - n}}\]

Therefore,

$ {\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8} = {\left( { - 4} \right)^{5 - 8}} \\ $

$ = {\left( { - 4} \right)^{ - 3}} \\ $

Again, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\]

Therefore,

\[{\left( { - 4} \right)^{ - 3}} = \dfrac{1}{{{{\left( { - 4} \right)}^3}}}\]

So, the simplified form of \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\] is \[\dfrac{1}{{{{\left( { - 4} \right)}^3}}}\].


(ii) \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\]

Ans: To solve this problem, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]

Therefore,

$ {\left( {\dfrac{1}{{{2^3}}}} \right)^2} = \dfrac{1}{{{2^{2 \times 3}}}} \\ $

$ = \dfrac{1}{{{2^6}}} \\ $

So, the simplified form of  \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\] is \[\dfrac{1}{{{2^6}}}\].


(iii) \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\]

Ans: To solve this problem, it has to use property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].

Therefore,

\[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4} = {\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Again using the property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\]

Therefore, the above expression will be written as 

\[{\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Also,

\[{\left( { - 1} \right)^4} = 1\]

Therefore,

 $ {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {3^{4 - 4}} \times {5^4} \\ $

$ = {3^0} \times {5^4} \\ $

Also,

\[{x^0} = 1\]

Therefore,

\[{3^0} \times {5^4} = {5^4}\]

So the simplified form of  \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\] is \[{5^4}\].


(iv)  \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\]

Ans: To solve this problem, it has to use property

\[{a^{ - n}} = \dfrac{1}{{{a^n}}}\].

Therefore,

\[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}} = \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}}\]

Again using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].

Therefore,

Above expression will be written as,

$ \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}} = \dfrac{1}{{{{\left[ {2 \times \left( { - 7} \right)} \right]}^3}}} \\ $

$ = \dfrac{1}{{{{\left( { - 14} \right)}^3}}} \\ $

So, the simplified form of \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\] is \[\dfrac{1}{{{{\left( { - 14} \right)}^3}}}\].


3. Find the value of 

(i) \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\]

Ans: To solve this problem, it has to use property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\] and \[{x^0} = 1\].

Therefore,

$ \left( {{3^0} + {4^{ - 1}}} \right) \times {2^2} = \left( {1 + \dfrac{1}{4}} \right) \times 4 \\ $

$ = \dfrac{5}{4} \times 4 \\ $

$  = 5 \\ $

So, the value of \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\] is 5.


(ii) \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\]

Ans:

\[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}}\]

To solve this expression, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].

Therefore,

\[\left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}}\]

Using property \[{a^m} \times {a^n} = {a^{m + n}}\],

$ \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}} = {2^{\left( { - 1 - 2} \right)}} \div {2^{ - 2}} \\ $

$ = {2^{ - 3}} \div {2^{ - 2}} \\ $

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\],

$ {2^{ - 3}} \div {2^{ - 2}} = {2^{\left( { - 3 - \left( { - 2} \right)} \right)}} \\ $

$ = {2^{\left( { - 3 + 2} \right)}} \\ $

$ = {2^{ - 1}} \\ $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

\[{2^{ - 1}} = \dfrac{1}{2}\]

So the value of  \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\] is \[\dfrac{1}{2}\].


(iii) \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\]

Ans: To solve this problem above expression can be written as 

$  {\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}} = {\left( {\dfrac{2}{1}} \right)^2} + {\left( {\dfrac{3}{1}} \right)^2} + {\left( {\dfrac{4}{1}} \right)^2} \\ $

$ = {2^2} + {3^2} + {4^2} \\ $

$ = 4 + 9 + 16 \\ $

$ = 29 \\ $

Therefore the value of \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\] is 29.

(iv) \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\]

Ans: To solve this problem, it has to use property \[{x^0} = 1\],

Therefore,

\[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0} = 1\]

So the value of \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\] is 1.


(v) \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

The above expression can be written as,

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2} = {\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2}\]

Now, using the property\[{\left( {{a^m}} \right)^n} = {a^{mn}}\],

\[{\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2} = {\left( {\dfrac{3}{{ - 2}}} \right)^4}\]

Using the property  \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\],

$  {\left( {\dfrac{3}{{ - 2}}} \right)^4} = \dfrac{{{{\left( 3 \right)}^4}}}{{{{\left( { - 2} \right)}^4}}} \\ $

$ = \dfrac{{81}}{{16}} \\ $

So the value of \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\] is \[\dfrac{{81}}{{16}}\].


4. Evaluate

(i) \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\]

Ans: To solve this question, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

So, the above expression becomes,

\[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{{2^4} \times {5^3}}}{{{8^1}}}\]

8 can be written as \[2 \times 2 \times 2 = {2^3}\]

Therefore,

\[\dfrac{{{2^4} \times {5^3}}}{{{8^1}}} = \dfrac{{{2^4} \times {5^3}}}{{{2^3}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

 $ \dfrac{{{2^4} \times {5^3}}}{{{2^3}}} = {2^{4 - 3}} \times {5^3} \\ $

 $ = {2^1} \times {5^3} \\ $

 $ = 2 \times 125 \\ $

 $ = 250 \\ $

So the value of \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\] is 250.


(ii) \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\]

Ans: To solve this problem, using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\],

Therefore,

$\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}} = {\left( {5 \times 2} \right)^{ - 1}} \times {6^{ - 1}} $

$= {10^{ - 1}} \times {6^{ - 1}} $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

${10^{ - 1}} \times {6^{ - 1}} $

$= \dfrac{1}{{10}} \times \dfrac{1}{6} $

$ = \dfrac{1}{{60}} $

So, the value of \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\] is \[\dfrac{1}{{60}}\].


5. Find the value of \[m\] for which \[{5^m} \div {5^{ - 3}} = {5^5}\].

Ans: The given equation is \[{5^m} \div {5^{ - 3}} = {5^5}\]

To solve this problem, use the property \[{a^m} \div {a^n} = {a^{m - n}}\].

Therefore,

$\Rightarrow  {5^m} \div {5^{ - 3}} = {5^5} $

$\Rightarrow{5^{\left( {m - \left( { - 3} \right)} \right)}} = {5^5} $

\[\Rightarrow{5^{m + 3}} = {5^5} \]

As the base of the power on both sides is the same, so their power must be equal.

Therefore,

$ m + 3 = 5 $

$\Rightarrow m = 5 - 3 $ 

$\Rightarrow m = 2 $

So the value  of \[m\] is 2.


6. Evaluate 

(i) \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Above expression can be written as

${\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}$

$ = {\left\{ {\left( {\dfrac{3}{1}} \right) - \left( {\dfrac{4}{1}} \right)} \right\}^{ - 1}} $

$= {\left( {3 - 4} \right)^{ - 1}} $

$= {\left( { - 1} \right)^{ - 1}} $

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

$  {\left( { - 1} \right)^{ - 1}} $

$= \dfrac{1}{{ - 1}} $

 $  =  - 1 $

So the value of \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\] is \[ - 1\].


(ii) \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Ans: The given expression is

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Above expression can be written as,

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}} = {\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4}\]

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], we get,

\[{\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4} = \dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$\dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}} = \dfrac{{{8^{7 - 4}}}}{{{5^{7 - 4}}}} $

$= \dfrac{{{8^3}}}{{{5^3}}} $

$= \dfrac{{512}}{{125}} $

So the value of \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\] is \[\dfrac{{512}}{{125}}\].


7. Simplify 

(i) \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\left( {t \ne 0} \right)\]

Ans: 25 can be written as \[{5^2}\].

10 can be written as \[2 \times 5\].

Therefore, above expression can be written as,

\[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}} = \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\] and \[{a^m} \times {a^n} = {a^{m + n}}\], we get

$ \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}} $

$= \dfrac{{{5^2} \times {t^{\left( { - 4 - \left( { - 8} \right)} \right)}}}}{{{5^{ - 3 + 1}} \times 2}} $

$   = \dfrac{{{5^2} \times {t^4}}}{{{5^{ - 2}} \times 2}} $

$   = \dfrac{{{5^{\left( {2 - \left( { - 2} \right)} \right)}} \times {t^4}}}{2} $

 $  = \dfrac{{{5^4} \times {t^4}}}{2} $

 $  = \dfrac{{625{t^4}}}{2} $

So the  value of  \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\] is \[\dfrac{{625{t^4}}}{2}\].


(ii) \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Ans: To solve this problem, 125 can be written as \[{5^3}\].

Therefore, to simplify the expression, we will write the given numbers in terms of 2 and 5 using exponent property.

Hence,

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Using property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\], we get

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$ \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}} $

$= {3^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {2^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {5^{\left( { - 5 + 3 - \left( { - 7} \right)} \right)}} $

$= {3^0} \times {2^0} \times {5^5} $

Using property \[{x^0} = 1\], we get

\[{3^0} \times {2^0} \times {5^5} = {5^5}\]

So the value of \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\] is \[{5^5}\].


NCERT Solutions for Class 8 Maths Chapter 12 Exponents and Powers Exercise 12.1

Opting for the NCERT solutions for Ex 12.1 Class 8 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 12.1 Class 8 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 8 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 8 Maths Chapter 12 Exercise 12.1 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 8 Maths Chapter 12 Exercise 12.1, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.

Do not delay any more. Download the NCERT solutions for Class 8 Maths Chapter 12 Exercise 12.1 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

Share this with your friends
SHARE
TWEET
SHARE
SUBSCRIBE