Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 7 Maths In Hindi Chapter 7 Congruence of Triangles

ffImage

NCERT Solutions for Class 7 Maths Chapter 7 Congruence of Triangles In Hindi PDF Download

Download the Class 7 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 7, you have reached the right platform. The NCERT Solutions for Class 7 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 7 Maths in English and Hindi from our website at absolutely free of cost. Subjects like Science, Maths, English will become easy to study if you have access to NCERT Solution for Class 7 Science , Maths solutions and solutions of other subjects.


NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards. 


We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.


Class:

NCERT Solutions for Class 7

Subject:

Class 7 Maths

Chapter Name:

Chapter 7 - Congruence Of Triangles

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Access NCERT Solution for Class 7 Maths Chapter 7- त्रिभुजों की सर्वांगसमता

अभ्यास 7.1

1. निम्नलिखित कथनों को पूरा कीजिए:

(a) दो रेखाखंड सर्वांगसम होते हैं यदि -------।

उत्तर: उनकी लंबाई समान होती है।

(b) दो सर्वांगसम कोणों में से एक की माप \[\mathbf{70}\] है, दूसरे कोण की माप ----- है।

उत्तर: \[70{}^\circ \]

(c) जब हम \[\angle \mathbf{A}=\angle \mathbf{B}\] लिखते हैं, हमारा वास्तव में अर्थ होता है-------

उत्तर: दोनों कोण सर्वांगसम हैं।


2. वास्तविक जीवन से सम्बंधित सर्वांगसम आकारों के कोई दो उदाहरण दीजिए।

उत्तर: \[5\] रु के दो सिक्के, किसी किताब के दो पन्ने|


3. यदि सुमेलन \[\mathbf{ABC}\leftrightarrow \mathbf{FED}\]के अंतर्गत \[\mathbf{\Delta ABC}\cong \mathbf{\Delta FED}\] तो त्रिभुजों के सभी संगत सर्वांगसम भागों को लिखिए।

उत्तर: \[ AB=FE,\text{ }BC=ED,\text{ }AC=FD\]

$ \angle ABC=\angle FED $

$ \angle ACB=\angle FDE $

$ \angle BAC=\angle EFD $


4. यदि \[\mathbf{\Delta DEF}\cong \mathbf{\Delta BCA}\], तो \[\mathbf{\Delta BCA}\] के उन भागों को लिखिए जो निम्न के संगत हो:

\[\left( i \right)\angle E\text{ }\left( ii \right)\text{ }\overline{EF}\text{ }\left( iii \right)\angle F\text{ }\left( iv \right)\text{ }\overline{DF}\]

उत्तर: \[\left( i \right)\angle C,\text{ }\left( ii \right)\text{ }CA,\text{ }\left( iii \right)\angle A,\text{ }\left( iv \right)\text{ }BA\]


अभ्यास 7.2

1. निम्न में आप कौन से सर्वांगसम प्रतिबंधों का प्रयोग करेंगे?

(a) दिया है: \[\mathbf{AC}=\mathbf{DF},\mathbf{AB}=\mathbf{DE},\mathbf{BC}=\mathbf{EF}\]

इसलिए, \[\vartriangle \mathbf{ABC}\cong \vartriangle \mathbf{DEF}\]


seo images


उत्तर: \[SSS, ABC\] के पक्ष \[ DEF\] के पक्षो के बराबर हैं।

(b) दिया है: \[\mathbf{ZX}=\mathbf{RP},\mathbf{RQ}=\mathbf{ZY}\]

\[\angle \mathbf{PRQ}=\angle \mathbf{XYZ}\]

इसलिए, \[\vartriangle \mathbf{PQR}\cong \vartriangle \mathbf{XYZ}\]


seo images


उत्तर: \[SAS\] दो पक्षो के रूप में और इन पक्षो के बीच शामिल कोण \[PQR\] दो पक्षो और कोण बराबर हैं\[XYZ\] के पक्षो के बीच शामिल हैं। 

(c) दिया है: \[\angle \mathbf{MLN}=\angle \mathbf{FGH}\]

\[\angle \mathbf{NML}=\angle \mathbf{GFH}\]

\[\mathbf{ML}=\mathbf{FG}\]

इसलिए, \[\vartriangle \mathbf{LMN}\cong \vartriangle \mathbf{GFH}\]


seo images


उत्तर: \[ASA,\]दो कोणो के रूप में और इन कोणो के बीच शामिल पक्ष \[LMN\] दो कोणो और पक्ष के बराबर हैं और \[~GFH\] के इन कोणो के बीच शामिल हैं।

(d) दिया है: \[\mathbf{EB}=\mathbf{DB}\]

\[\mathbf{AE}=\mathbf{BC}\]

 \[\angle \mathbf{A}=\angle \mathbf{C}=\text{ }\mathbf{90}^\circ\]

इसलिए, \[\vartriangle \mathbf{ABE}\cong \vartriangle \text{ }\mathbf{CDB}\]


seo images


उत्तर: \[RHS\] दिए गए दो समकोण त्रिभुज में ,एक तरह और कर्ण हैं क्रमशः बराबर है।


2. आप \[\mathbf{\Delta ART}\mathbf{\Delta PEN}\] दर्शाना चाहते हैं,

(a) यदि आप \[SSS\] सर्वांगसमता प्रतिबंध का प्रयोग करें तो आपको दर्शाने की आवश्यकता है:

\[\left( \mathbf{i} \right)\text{ }\mathbf{AR}=\text{ }\left( \mathbf{ii} \right)\text{ }\mathbf{RT}=\text{ }\left( \mathbf{iii} \right)\text{ }\mathbf{AT}=\]

उत्तर: \[\left( i \right)\text{ }AR\text{ }=\text{ }PE,\text{ }\left( ii \right)\text{ }RT\text{ }=\text{ }EN,\text{ }\left( iii \right)\text{ }AT\text{ }=\text{ }PN\]

(b) यदि यह दिया गया है कि \[\angle \mathbf{T}\text{ }=\angle \mathbf{N}\] और आपको \[\mathbf{SAS}\] प्रतिबंध का प्रयोग करना है, तो आपको आवश्यकता होगी

\[\left( \mathbf{i} \right)\text{ }\mathbf{RT}\text{ }=\text{ }\] और  \[\left( \mathbf{ii} \right)\text{ }\mathbf{PN}\text{ }=\]

उत्तर: \[\left( i \right)\text{ }RT\text{ }=\text{ }EN,\text{ }\left( ii \right)\text{ }PN\text{ }=\text{ }AT\]

(c) यदि यह दिया गया है कि \[\mathbf{AT}\text{ }=\text{ }\mathbf{PN}\] और आपको \[\mathbf{ASA}\] प्रतिबंध का प्रयोग करना है तो आपको आवश्यकता होगी:


seo images


\[\left( \mathbf{i} \right)\text{ }?\text{ }=\text{ }\left( \mathbf{ii} \right)\text{ }?\text{ }=\]

उत्तर: 

\[\left( i \right)\angle ATR\text{ }=\angle PNE,\text{ }\left( ii \right)\angle RAT\text{ }=\angle EPN\]


3. आपको \[\mathbf{\Delta AMP}\mathbf{\Delta AMQ}\] दर्शाना है। निम्न चरणों में रिक्त कारणों को भरिए|

क्रम

कारण

\[\left( a \right)\text{ }PM=\text{ }QM\]

(i)....

(\[b)\angle PMA\text{ }=\angle QMA\]

(ii)...

\[\left( c \right)\text{ }AM\text{ }=\text{ }AM\]

(iii)...

\[\left( d \right)\text{ }\Delta AMP\text{ }=\text{ }\Delta AMQ\]

(iv)...


seo images


उत्तर: 

क्रम

कारण

\[\left( a \right)\text{ }PM=\text{ }QM\]

दिया हैं

(\[b)\angle PMA\text{ }=\angle QMA\]

दिया हैं

\[\left( c \right)\text{ }AM\text{ }=\text{ }AM\]

उभयनिष्ठ

\[\left( d \right)\text{ }\Delta AMP\text{ }=\text{ }\Delta AMQ\]

सर्वांगसम प्रतिबंध


4. \[\mathbf{\Delta ABC}\] में, \[\angle \mathbf{A}\text{ }=\text{ }\mathbf{30}{}^\circ ,\angle \mathbf{B}\text{ }=\text{ }\mathbf{40}{}^\circ \]और \[\angle \mathbf{C}\text{ }=\text{ }\mathbf{110}{}^\circ \]है। \[\mathbf{\Delta PQR}\] में \[\angle \mathbf{P}=\mathbf{30}{}^\circ ,\angle \mathbf{Q}=\mathbf{40}{}^\circ \]और \[\angle \mathbf{R}\text{ }=\text{ }\mathbf{110}{}^\circ \]है। एक विद्यार्थी कहता है कि \[\mathbf{AAA}\] सर्वांगसमता प्रतिबंध से \[\mathbf{\Delta ABC}\cong \mathbf{\Delta PQR}\] है। क्या यह कथन सत्य है? क्यों या क्यों नहीं?

उत्तर: नही| यह संपत्ति दर्शाती है कि इन त्रिकोणों के अपने सम्बंधित कोण मापने में समान है | हालांकि, इससे उनके पक्षों के बारे में कोई जानकारी नही मिलती है| इन कोणों के किनारे \[1:1\] से कुछ भिन्न अनुपात है| इसलिए यह कथन असत्य है।


5. आकृति में दो त्रिभुज \[\mathbf{ART}\] तथा \[\mathbf{OWN}\] सर्वांगसम हैं जिनके संगत भागों को अंकित किया गया है। हम लिख सकते हैं \[\vartriangle \mathbf{RAT};\cong ?\]


seo images


उत्तर:आकृति से ,

$ \angle \text{RAT}=\angle \text{WON} $

$ \angle \text{ART}=\angle \text{OWN} $

$ \text{OR}=\text{OW} $ 

इसीलिए \[\text{ASA}\] मापदंड द्वारा 

ΔRAT ≅ ΔWON


6. कथनों को पूरा कीजिए:


seo images


\[\left( i \right)\text{ }\Delta BCA\cong ?\text{ }\left( ii \right)\text{ }\Delta QRS;\cong ?\]

उत्तर: 

(i)  चित्र मे हमे दिख रहा कि,

$ BC=BT $ 

$ AC=AT $

\[BA\] मध्यिका है ।

इसीलिए

\[,\Delta BCA\cong BTA\]

(ii)  चित्र मे हमे दिख रहा कि,

$PQ = RS $

 $ QT = QS $

 $ PT = QR$ 

इसीलिए,

\[\Delta QRS\cong TPQ\]


7. एक वर्गांकित शीट पर, बराबर क्षेत्रफलों वाले तो त्रिभुजों को इस प्रकार बनाइए कि

(i). त्रिभुज सर्वांगसम हों

(ii). त्रिभुज सर्वांगसम न हो।

आप उनके परिमाप के बारे में क्या कह सकते हैं?

उत्तर: (i)त्रिभुज सर्वांगसम हों,


seo images


यहाँ \[\Delta ABC\] और \[\Delta PQR\]  का एक शेत्र है और एक दुसरे के लिए भी बधाई है| और दोनों त्रिभुजो कि परिधि सामान होगी|

(ii)त्रिभुज सर्वांगसम न हो।


seo images


यहाँ, दो त्रिकोणों कि उचाई और आधार सामान है| इस प्रकार, उनके शेत्र सामना है| हालांकि, ये त्रिकोण कि परिधि सामान नही होगी|


8. आकृति में एक सर्वांगसम भागों का एक अतिरिक्त युग्म बताये जिससे \[\mathbf{\Delta ABC}\] और \[\mathbf{\Delta PQR}\] सर्वांगसम हो जाएँ। आपने किस प्रतिबंध का प्रयोग किया?


seo images


उत्तर:यदि त्रिभुज \[\Delta ABC\] और \[\Delta PQR\] सर्वांगसम हैं तो दी गई युग्मो के अतिरिक्त एक युग्म 

 \[AC\text{ }=\text{ }PR\] भी होना चाहिए ।

दिया गया है, $\angle B=\angle Q={{90}^{\circ}} $ 

 $\angle C=\angle R$

 $BC=QR $

अतः \[\Delta ABC\cong \Delta PQR\]  (\[ASA\] सर्वांगसम प्रतिबंध)


9. चर्चा कीजिए, क्यों?

\[\mathbf{\Delta ABC}\cong \mathbf{\Delta FED}\]


seo images


उत्तर: \[\angle A\text{ }=\angle F\] (दिया गया है)

\[\angle B\text{ }=\angle E\] (दिया गया है)

\[BC\text{ }=\text{ }DE\] (दिया गया है)

\[\Delta \text{ABC}\] और  \[\Delta \text{FED}\] में ,

\[\angle B\text{ }=\angle E= \angle {90}^\circ\]

\[\angle A\text{ }=\angle F\]

अंत: \[ASA\] सर्वांगसमता प्रतिबंध से \[\Delta ABC\cong \Delta FED\] सिद्ध हुआ|


NCERT Solutions for Class 7 Maths Chapter 7 Congruence of Triangles In Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 7 Maths Chapter 7 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 7 Maths Chapter 7 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.

NCERT Solutions for Class 7 Maths Chapter 7 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 7 Maths Congruence of Triangles solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that. 

NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 7 Maths Congruence of Triangles in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 7 can download these solutions at any time as per their convenience for self-study purpose. 

These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 7 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations. 

FAQs on NCERT Solutions for Class 7 Maths In Hindi Chapter 7 Congruence of Triangles

1. Why are NCERT Solutions for Class 7 Maths important?

The NCERT Solutions for Class 7 Maths are designed by subject matter experts with extreme precision and detail that covers the syllabus allotted by the CBSE for Class 7. These exercises in the solution are extremely important for the students to achieve good grades in the examination. The language used is simple and precise and therefore extremely comprehensible. This makes the learning process easier for the students and helps them get a strong grip of the content and topic in the syllabus. Along with this, these exercises also have detailed answers helping the student in every step so that he or she has no doubts left. The NCERT Solutions for Class 7 not only helps the students in his examinations for Class 7 but also paves way for him in his higher studies. 

2. What are the Chapters in the NCERT Solutions for Class 7 Maths?

The chapters that are included in the NCERT Solutions for Class 7 Maths are:

  • Chapter 1: Integers

  • Chapter 2: Fractions and Decimals

  • Chapter 3: Data Handling

  • Chapter 4: Simple Equations 

  • Chapter 5: Lines and Angles

  • Chapter 6:The Triangles and its Properties

  • Chapter 7: Congruence of Triangles 

  • Chapter 8: Comparing Quantities

  • Chapter 9: Rational Numbers

  • Chapter 10: Practical Geometry

  • Chapter 11: Perimeter and Area 

  • Chapter 12: Algebraic Expressions 

  • Chapter 13: Exponents and Powers 

  • Chapter 14: Symmetry

3. How can I score good marks in Maths in Class 7?

To secure good grades it is extremely important to get a good grip of the concepts taught in the syllabus. To achieve this one has to practice the questions given by CBSE and polish and strengthen their skills and knowledge. NCERT solutions come as a rescue to many students who are yet to appear for examinations. The exercises devised in these solutions are detailed and designed by the subject matter experts keeping in mind the needs of the students. The language used is clear and comprehensible making it easier to understand the concepts. It is advised to students appearing for exams to follow NCERT solutions in order to achieve good grades. 

4. Is the NCERT solution for Class 7 Maths Chapter 7 from an exam point of view?

Yes, the exercises and solutions for Class 7 Maths Chapter 7, i.e., Congruence of Triangles are wholly from the exam point of view. These exercises are designed by experts keeping in mind the CBSE syllabus. The language that is used is eloquent and simple, allowing the child to grasp the concepts with confidence. These exercises not only fulfill the demands for the Class 7 examinations but in addition to that, these exercises also focus on the higher classes where these might come into use. 

5. What is the basic concept covered in Class 7 Maths Chapter 7?

The  basic concepts that are covered include;

  • Congruence of plane figures.

  • Congruence among line segments

  • Congruence of angles

  • Congruence of triangles

  • Congruence among right-angled triangles

The NCERT Solutions for NCERT Solutions for Class 7 Maths Chapter 7 has exercises covering all these concepts along with detailed and explanatory answers. These help the student in every step so the concepts are understood without any doubts. The practice of these exercises will help the students in securing good marks.