Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 7 Maths Chapter 10 Algebraic Expressions Exercise 10.2 - 2025-26

ffImage
banner
widget title icon
Latest Updates

Maths Class 7 Chapter 10 Questions and Answers - Free PDF Download

Free PDF download of NCERT Solutions for Class 7 Maths Chapter 10 Exercise 10.2 (EX 10.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 7 Maths Chapter 10 Algebraic Expressions Exercise 10.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 7

Subject:

Class 7 Maths

Chapter Name:

Chapter 10 - Algebraic Expressions

Exercise:

Exercise - 10.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2025-26

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



Download NCERT Solutions PDF and opt to cross-refer post-answering questions to score subject-best marks. Subjects like Science, Maths, English, Social Science, Hindi will become easy to study if you have access to NCERT Solution for Class 7 Science , Maths solutions and solutions of other subjects.

Access NCERT Solutions for Class 7 Maths Chapter 10 - Algebraic Expressions

Exercise 10.2

1. If $\mathbf{m = 2}$, find the value of:

(i)$\mathbf{m - 2}$

Ans: Substitute $2$ for $m$ and solve.

$ \Rightarrow m - 2 = 2 - 2 \\ $

$ \Rightarrow m - 2 = 0  \\ $

The value is $0$.

(ii) $\mathbf{3m - 5}$

Ans: Substitute $2$ for $m$ and solve.

$ \Rightarrow 3m - 5 = 3\left( 2 \right) - 5 \\$

$ \Rightarrow 3m - 5 = 6 - 5 \\ $

$ \Rightarrow 3m - 5 = 1 \\ $

The value is $1$.

(iii) $\mathbf{9 - 5m}$

Ans: Substitute $2$ for $m$ and solve.

$ \Rightarrow 9 - 5m = 9 - 5\left( 2 \right) \\ $

$ \Rightarrow 9 - 5m = 9 - 10  \\ $

$ \Rightarrow 9 - 5m =  - 1 \\ $

The value is $ - 1$.

(iv)$\mathbf{3{m^2} - 2m - 7}$

Ans: Substitute $2$ for $m$ and solve.

$ \Rightarrow 3{m^2} - 2m - 7 = 3{\left( 2 \right)^2} - 2\left( 2 \right) - 7 \\ $

$ \Rightarrow 3{m^2} - 2m - 7 = 3\left( 4 \right) - 4 - 7  \\ $

 $ \Rightarrow 3{m^2} - 2m - 7 = 12 - 11  \\ $

  $ \Rightarrow 3{m^2} - 2m - 7 = 1 \\  $

The value is $1$.

(v) $\mathbf{\dfrac{{5m}}{2} - 4}$

Ans: Substitute $2$ for $m$ and solve.

$ \Rightarrow \dfrac{{5m}}{2} - 4 = \dfrac{{5 \times 2}}{2} - 4 \\ $

 $ \Rightarrow \dfrac{{5m}}{2} - 4 = 5 - 4 \\ $

 $ \Rightarrow \dfrac{{5m}}{2} - 4 = 1 \\ $

The value is $1$.


2. If $\mathbf{p =  - 2}$, find the value of:

(i) $\mathbf{4p + 7}$

Ans: Substitute $ - 2$ for $p$ and solve.

$ \Rightarrow 4p + 7 = 4\left( { - 2} \right) + 7 \\ $

$ \Rightarrow 4p + 7 =  - 8 + 7 \\ $

 $ \Rightarrow 4p + 7 =  - 1 \\ $

 The value is $ - 1$.

(ii) $\mathbf{ - 3{p^2} + 4p + 7}$

Ans: Substitute $ - 2$ for $p$ and solve.

$\Rightarrow  - 3{p^2} + 4p + 7 =  - 3{\left( { - 2} \right)^2} + 4\left( { - 2} \right) + 7 \\ $

  $ \Rightarrow  - 3{p^2} + 4p + 7 =  - 3\left( 4 \right) - 8 + 7 \\ $

  $ \Rightarrow  - 3{p^2} + 4p + 7 =  - 12 - 1 \\ $

  $ \Rightarrow  - 3{p^2} + 4p + 7 =  - 13 \\ $

The value is $ - 13$.

(iii) $\mathbf{ - 2{p^3} - 3{p^2} + 4p + 7}$

Ans: Substitute $ - 2$ for $p$ and solve.

$ \Rightarrow  - 2{p^3} - 3{p^2} + 4p + 7 =  - 2{\left( { - 2} \right)^3} - 3{\left( { - 2} \right)^2} + 4\left( { - 2} \right) + 7 \\ $

 $ \Rightarrow  - 2{p^3} - 3{p^2} + 4p + 7 =  - 2 \times \left( { - 8} \right) - 3\left( 4 \right) - 8 + 7 \\ $

$ \Rightarrow  - 2{p^3} - 3{p^2} + 4p + 7 = 16 - 12 - 1 \\ $

$ \Rightarrow  - 2{p^3} - 3{p^2} + 4p + 7 = 4 - 1 \\ $

$ \Rightarrow  - 2{p^3} - 3{p^2} + 4p + 7 = 3  \\ $

The value is $3$.


3. Find the value of the following expressions, when $\mathbf{x =  - 1}$:

(i) $\mathbf{2x - 7}$

Ans: Substitute $ - 1$ for $x$ and solve.

$ \Rightarrow 2x - 7 = 2\left( { - 1} \right) - 7 \\ $

$ \Rightarrow 2x - 7 =  - 2 - 7 \\ $

$ \Rightarrow 2x - 7 =  - 9 \\ $

The value of expression $2x - 7$ is $ - 9$.

(ii) $ \mathbf{- x + 2}$

Ans: Substitute $ - 1$ for $x$ and solve.

$ \Rightarrow  - x + 2 =  - \left( { - 1} \right) + 2  \\ $

$ \Rightarrow  - x + 2 = 1 + 2 \\ $

 $ \Rightarrow  - x + 2 = 3  \\ $ 

The value of expression $ - x + 2$ is $3$.

(iii) $\mathbf{{x^2} + 2x + 1}$

Ans: Substitute $ - 1$ for $x$ and solve.

$ \Rightarrow {x^2} + 2x + 1 = {\left( { - 1} \right)^2} + 2\left( { - 1} \right) + 1 \\ $

$ \Rightarrow {x^2} + 2x + 1 = 1 - 2 + 1  \\ $

$ \Rightarrow {x^2} + 2x + 1 =  - 1 + 1  \\ $

$ \Rightarrow {x^2} + 2x + 1 = 0 \\ $

The value of expression ${x^2} + 2x + 1$ is $0$.

(iv)$\mathbf{2{x^2} - x - 2}$

Ans: Substitute $ - 1$ for $x$ and solve.

$ \Rightarrow 2{x^2} - x - 2 = 2{\left( { - 1} \right)^2} - \left( { - 1} \right) - 2 \\ $

$ \Rightarrow 2{x^2} - x - 2 = 2 \times 1 + 1 - 2 \\ $

$ \Rightarrow 2{x^2} - x - 2 = 2 + 1 - 2 \\ $

$ \Rightarrow 2{x^2} - x - 2 = 3 - 2 \\ $

$ \Rightarrow 2{x^2} - x - 2 = 1 \\ $

The value of expression $2{x^2} - x - 2$ is $1$.


4. If $\mathbf{a = 2$, $b =  - 2}$, find the value of:

(i) $\mathbf{{a^2} + {b^2}}$

Ans: Substitute $2$ for $a$ and $ - 2$ for $b$ then solve.

$ \Rightarrow {a^2} + {b^2} = {\left( 2 \right)^2} + {\left( { - 2} \right)^2} \\ $

$ \Rightarrow {a^2} + {b^2} = 4 + 4  \\ $

$ \Rightarrow {a^2} + {b^2} = 8 \\ $

The value is $8$.

(ii) ${a^2} + ab + {b^2}$

Ans: Substitute $2$ for $a$ and $ - 2$ for $b$ then solve.

$ \Rightarrow {a^2} + ab + {b^2} = {\left( 2 \right)^2} + \left( 2 \right)\left( { - 2} \right) + {\left( { - 2} \right)^2} \\ $

$ \Rightarrow {a^2} + ab + {b^2} = 4 - 4 + 4 \\ $

$ \Rightarrow {a^2} + ab + {b^2} = 4 \\ $

The value is $4$.

(iii) ${a^2} - {b^2}$

Ans: Substitute $2$ for $a$ and $ - 2$ for $b$ then solve.

$ \Rightarrow {a^2} - {b^2} = {\left( 2 \right)^2} - {\left( { - 2} \right)^2}  \\ $

$ \Rightarrow {a^2} - {b^2} = 4 - 4 \\ $

$ \Rightarrow {a^2} - {b^2} = 0  \\ $

The value is $0$.


5. When $\mathbf{a = 0$, $b =  - 1}$, find the value of the given expressions:

(i) $\mathbf{2a + 2b}$

Ans: Substitute $0$ for $a$ and $ - 1$ for $b$ then solve.

$ \Rightarrow 2a + 2b = 2\left( 0 \right) + 2\left( { - 1} \right)  \\ $

$ \Rightarrow 2a + 2b = 0 - 2  \\ $

$ \Rightarrow 2a + 2b =  - 2  \\ $

The value of expression $2a + 2b$ is $ - 2$.

(ii) $\mathbf{2{a^2} + {b^2} + 1}$

Ans: Substitute $0$ for $a$ and $ - 1$ for $b$ then solve.

$ \Rightarrow 2{a^2} + {b^2} + 1 = 2{\left( 0 \right)^2} + {\left( { - 1} \right)^2} + 1  \\ $

$ \Rightarrow 2{a^2} + {b^2} + 1 = 2 \times 0 + 1 + 1 \\ $

$ \Rightarrow 2{a^2} + {b^2} + 1 = 0 + 2 \\ $

$ \Rightarrow 2{a^2} + {b^2} + 1 = 2 \\ $

The value of expression $2{a^2} + {b^2} + 1$ is $2$.

(iii) $\mathbf{2{a^2}b + 2a{b^2} + ab}$

Ans: Substitute $0$ for $a$ and $ - 1$ for $b$ then solve.

$ \Rightarrow 2{a^2}b + 2a{b^2} + ab = 2{\left( 0 \right)^2}\left( { - 1} \right) + 2\left( 0 \right){\left( { - 1} \right)^2} + \left( 0 \right)\left( { - 1} \right) \\ $

$ \Rightarrow 2{a^2}b + 2a{b^2} + ab = 0 + 0 + 0 \\ $

$ \Rightarrow 2{a^2}b + 2a{b^2} + ab = 0 \\ $

The value of expression $2{a^2}b + 2a{b^2} + ab$ is $0$.

(iv)$\mathbf{{a^2} + ab + 2}$

Ans: Substitute $0$ for $a$ and $ - 1$ for $b$ then solve.

$ \Rightarrow {a^2} + ab + 2 = {\left( 0 \right)^2} + \left( 0 \right)\left( { - 1} \right) + 2 \\$

$ \Rightarrow {a^2} + ab + 2 = 0 + 0 + 2 \\ $

$ \Rightarrow {a^2} + ab + 2 = 2 \\ $

The value of expression ${a^2} + ab + 2$ is $2$.


6. Simplify the expressions and find the value if $\mathbf{x}$ is equal to $\mathbf{2}$:

(i) $\mathbf{x + 7 + 4\left( {x - 5} \right)}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow x + 7 + 4\left( {x - 5} \right) = x + 7 + 4x - 20  \\ $

 $ \Rightarrow x + 7 + 4\left( {x - 5} \right) = x + 4x + 7 - 20 \\ $

 $ \Rightarrow x + 7 + 4\left( {x - 5} \right) = 5x - 13 \\ $

Substitute $2$ for $x$ and then solve.

$ \Rightarrow x + 7 + 4\left( {x - 5} \right) = 5\left( 2 \right) - 13  \\ $

$ \Rightarrow x + 7 + 4\left( {x - 5} \right) = 10 - 13 \\ $

$  \Rightarrow x + 7 + 4\left( {x - 5} \right) =  - 3 \\  $

 The determined value is $ - 3$.

(ii) $\mathbf{3\left( {x + 2} \right) + 5x - 7}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 3x + 6 + 5x - 7 \\ $

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 3x + 5x + 6 - 7 \\ $

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 8x - 1 \\  $

Substitute $2$ for $x$ and then solve.

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 8\left( 2 \right) - 1 \\ $

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 16 - 1  \\ $

$ \Rightarrow 3\left( {x + 2} \right) + 5x - 7 = 15 \\ $

The determined value is $15$.

(iii) $\mathbf{6x + 5\left( {x - 2} \right)}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 6x + 5\left( {x - 2} \right) = 6x + 5x - 10 \\ $

$ \Rightarrow 6x + 5\left( {x - 2} \right) = 11x - 10  \\ $

Substitute $2$ for $x$ and then solve.

$ \Rightarrow 6x + 5\left( {x - 2} \right) = 11 \times 2 - 10  \\ $

$ \Rightarrow 6x + 5\left( {x - 2} \right) = 22 - 10   \\ $

$ \Rightarrow 6x + 5\left( {x - 2} \right) = 12  \\  $

The determined value is $12$.

(iv)$\mathbf{4\left( {2x - 1} \right) + 3x + 11}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 8x - 4 + 3x + 11  \\ $

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 8x + 3x - 4 + 11  \\ $

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 11x + 7   \\ $

Substitute $2$ for $x$ and then solve.

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 11 \times 2 + 7 \\ $

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 22 + 7  \\ $

$ \Rightarrow 4\left( {2x - 1} \right) + 3x + 11 = 29  \\ $

The determined value is $29$.


7. Simplify these expressions and find their values if $\mathbf{x = 3$, $a =  - 1$, $b =  - 2}$:

(i) $\mathbf{3x - 5 - x + 9}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 3x - 5 - x + 9 = 3x - x - 5 + 9 \\ $

$ \Rightarrow 3x - 5 - x + 9 = 2x + 4 \\ $

Substitute $3$ for $x$ and then solve.

$ \Rightarrow 3x - 5 - x + 9 = 2 \times 3 + 4 \\ $

$ \Rightarrow 3x - 5 - x + 9 = 6 + 4 \\ $

$ \Rightarrow 3x - 5 - x + 9 = 10 \\ $

The determined value is $10$.

(ii) $\mathbf{2 - 8x + 4x + 4}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 2 - 8x + 4x + 4 =  - 8x + 4x + 2 + 4 \\ $

$ \Rightarrow 2 - 8x + 4x + 4 =  - 4x + 6  \\ $

Substitute $3$ for $x$ and then solve.

$ \Rightarrow 2 - 8x + 4x + 4 =  - 4 \times 3 + 6 \\ $

$ \Rightarrow 2 - 8x + 4x + 4 =  - 12 + 6 \\ $

$ \Rightarrow 2 - 8x + 4x + 4 =  - 6 \\ $

The determined value is $ - 6$.

(iii) $\mathbf{3a + 5 - 8a + 1}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 3a + 5 - 8a + 1 = 3a - 8a + 5 + 1 \\ $

 $ \Rightarrow 3a + 5 - 8a + 1 =  - 5a + 6 \\ $

Substitute $ - 1$ for $a$ and then solve.

$ \Rightarrow 3a + 5 - 8a + 1 =  - 5\left( { - 1} \right) + 6 \\ $

$ \Rightarrow 3a + 5 - 8a + 1 = 5 + 6 \\ $

$ \Rightarrow 3a + 5 - 8a + 1 = 11 \\ $

The determined value is $11$.

(iv)$\mathbf{10 - 3b - 4 - 5b}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 10 - 3b - 4 - 5b =  - 3b - 5b + 10 - 4 \\ $

$ \Rightarrow 10 - 3b - 4 - 5b =  - 8b + 6 \\  $

Substitute $ - 2$ for $b$ and then solve.

$ \Rightarrow 10 - 3b - 4 - 5b =  - 8\left( { - 2} \right) + 6  \\ $

$ \Rightarrow 10 - 3b - 4 - 5b = 16 + 6 \\ $

$ \Rightarrow 10 - 3b - 4 - 5b = 22 \\ $

The determined value is $22$.

(v) $\mathbf{2a - 2b - 4 - 5 + a}$

Ans: Simplify the brackets and combine the like terms.

$ \Rightarrow 2a - 2b - 4 - 5 + a = 2a + a - 2b - 4 - 5  \\ $

$ \Rightarrow 2a - 2b - 4 - 5 + a = 3a - 2b - 9 \\  $

 Substitute $ - 2$ for $b$ and $ - 1$ for $a$ and then solve.

$ \Rightarrow 2a - 2b - 4 - 5 + a = 3\left( { - 1} \right) - 2\left( { - 2} \right) - 9 \\ $

$ \Rightarrow 2a - 2b - 4 - 5 + a =  - 3 + 4 - 9 \\ $

$ \Rightarrow 2a - 2b - 4 - 5 + a = 1 - 9 \\ $

$ \Rightarrow 2a - 2b - 4 - 5 + a =  - 8 \\  $

The determined value is $ - 8$.


8. (i) If $\mathbf{z = 10}$, find the value of $\mathbf{{z^3} - 3\left( {z - 10} \right)}$.

Ans: Substitute the value of $z$ as $10$ then find a cube of $10$ to solve.

$ \Rightarrow {z^3} - 3\left( {z - 10} \right) = {\left( {10} \right)^3} - 3\left( {10 - 10} \right) \\ $

$ \Rightarrow {z^3} - 3\left( {z - 10} \right) = 1000 - 3 \times 0 \\ $

$ \Rightarrow {z^3} - 3\left( {z - 10} \right) = 1000 \\ $

The value of ${z^3} - 3\left( {z - 10} \right)$ is $1000$.

8. (ii) If $\mathbf{p =  - 10}$, find the value of $\mathbf{{p^2} - 2p - 100}$

Ans: Substitute the value of $p$ as $ - 10$ then find a square of $10$ to solve.

$  \Rightarrow {p^2} - 2p - 100 = {\left( {10} \right)^2} - 2\left( { - 10} \right) - 100  \\ $

$ \Rightarrow {p^2} - 2p - 100 = 100 + 20 - 100 \\ $

$ \Rightarrow {p^2} - 2p - 100 = 20  \\  $

The value of ${p^2} - 2p - 100$ is $20$.


9. What should be the value of $a$ if the value of $\mathbf{2{x^2} + x - a}$ equals to $5$, when $\mathbf{x = 0}$?

Ans: Substitute $0$ for $x$ in the expression $2{x^2} + x - a$ and equate it to $5$ in order to solve for $a$.

$ \Rightarrow 2{x^2} + x - a = 5 \\ $

$ \Rightarrow 2{\left( 0 \right)^2} + 0 - a = 5 \\ $

$ \Rightarrow 0 + 0 - a = 5 \\ $

$ \Rightarrow  - a = 5 \\ $

$ \Rightarrow a =  - 5 \\ $

So, the value of $a$ is $ - 5$.


10. Simplify the expression and find its value when $\mathbf{a = 5}$ and $\mathbf{b =  - 3}$:

$\mathbf{2\left( {{a^2} + ab} \right) + 3 - ab}$

Ans: Solve the brackets and combine the like terms with the variable $ab$. 

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 2{a^2} + 2ab + 3 - ab  \\ $

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 2{a^2} + 2ab - ab + 3 \\ $

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 2{a^2} + ab + 3 \\  $

Now substitute $5$ for $a$ and $ - 3$ for $b$ to solve.

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 2{\left( 5 \right)^2} + \left( 5 \right)\left( { - 3} \right) + 3 \\ $

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 2 \times 25 - 15 + 3 \\ $

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 50 - 12 \\ $

$ \Rightarrow 2\left( {{a^2} + ab} \right) + 3 - ab = 38  \\ $

The value of expression $2\left( {{a^2} + ab} \right) + 3 - ab$ is $38$.


NCERT Solutions for Class 7 Maths Chapter 10 Algebraic Expressions Exercise 10.2

Opting for the NCERT solutions for Ex 10.2 Class 7 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 10.2 Class 7 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.


Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 7 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 7 Maths Chapter 10 Exercise 10.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.


Besides these NCERT solutions for Class 7 Maths Chapter 10 Exercise 10.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 


Do not delay any more. Download the NCERT solutions for Class 7 Maths Chapter 10 Exercise 10.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.


Class 7 Maths Chapter 10: Exercises Breakdown

Exercises

Number of Questions

Exercise 10.1

7 Questions & Solutions



CBSE Class 7 Maths Chapter 10 Other Study Materials



Chapter-Specific NCERT Solutions for Class 7 Maths

Given below are the chapter-wise NCERT Solutions for Class 7 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.




Important Related Links for NCERT Class 7 Maths

Access these essential links for NCERT Class 7 Maths, offering comprehensive solutions, study guides, and additional resources to help students master language concepts and excel in their exams.


WhatsApp Banner

FAQs on NCERT Solutions For Class 7 Maths Chapter 10 Algebraic Expressions Exercise 10.2 - 2025-26

1. What are the key topics covered in the NCERT Solutions for Class 7 Maths Chapter 10, Algebraic Expressions?

The NCERT Solutions for Class 7 Maths Chapter 10 for the academic year 2025-26 guide students through essential concepts of algebra. Key topics include understanding terms, factors, and coefficients; identifying monomials, binomials, and trinomials; the crucial process of grouping and simplifying like and unlike terms; performing addition and subtraction of algebraic expressions; and finally, finding the value of an expression by substituting given values for variables.

2. How do you solve questions on adding algebraic expressions as per the NCERT method for Class 7?

To add algebraic expressions correctly, the NCERT solutions for Class 7 Maths follow a clear step-by-step method. First, identify the like terms in all the expressions you need to add. Next, group these like terms together. Finally, add the numerical coefficients of the like terms, keeping the variable part the same. For example, to add (2x + 3y) and (4x - y), you would group like terms to get (2x + 4x) + (3y - y), which simplifies to 6x + 2y.

3. Why is it essential to correctly identify 'like terms' before simplifying an expression in Chapter 10?

Correctly identifying like terms is the most critical step in simplifying algebraic expressions. Like terms are terms that have the exact same variable parts raised to the same power. You can only perform addition and subtraction on like terms. If you mistakenly add unlike terms (e.g., adding 3x and 4y), the result is incorrect and violates the fundamental rules of algebra. The NCERT solutions emphasise this to prevent errors and build a strong foundation for more complex equations.

4. What is the step-by-step process for finding the value of an expression, as shown in the Chapter 10 solutions?

The NCERT Solutions for Class 7 Maths Chapter 10 demonstrate a precise method for evaluating expressions:

  • First, write down the algebraic expression clearly.
  • Next, substitute the given numerical value for each variable in the expression.
  • Pay close attention to signs, especially when substituting negative numbers, and use brackets to avoid errors.
  • Finally, simplify the resulting numerical expression using the BODMAS rule to arrive at the final answer.

5. What common mistake should I avoid when subtracting one algebraic expression from another?

A very common mistake when subtracting algebraic expressions is forgetting to change the sign of every term in the expression being subtracted. For example, to subtract (a - b) from (2a + 3b), you must calculate (2a + 3b) - (a - b). The correct step is to change the signs inside the bracket, making it 2a + 3b - a + b. Many students only change the sign of the first term (a) and forget the second (-b), leading to an incorrect answer. The NCERT solutions highlight this step carefully to ensure accuracy.

6. How do the NCERT Solutions for Class 7 Maths Chapter 10 help build a strong foundation for higher classes?

The NCERT Solutions for Chapter 10 are crucial as they establish the fundamental principles of algebra. By providing clear, step-by-step methods for operations like addition, subtraction, and evaluation, they ensure students master the basics. This strong foundation is essential for tackling more advanced topics in Class 8, 9, and 10, such as linear equations, polynomials, and quadratic equations, which all rely on the concepts introduced here.

7. How are coefficients different from variables, and why is this distinction important in solving problems from Chapter 10?

In an algebraic term, the coefficient is the numerical factor (e.g., the '5' in 5x), while the variable is the letter (the 'x'). This distinction is vital because when you add or subtract like terms, you operate on the coefficients (5x + 2x = 7x), but the variable part remains unchanged. Understanding this prevents the common error of trying to alter the variables during these operations. The NCERT solutions reinforce this separation to ensure methodical and accurate problem-solving.