
Two dice are rolled. If both dices have six faces numbered $1,2,3,5,7$ and $11$, then the probability that the sum of the numbers on the top faces is less than or equal to $8$ is:
1.$\dfrac{{17}}{{36}}$
2. $\dfrac{4}{9}$
3. $\dfrac{5}{{12}}$
4. $\dfrac{1}{2}$
Answer
216.6k+ views
Hint: In this question, we are given the condition that two dice are rolled and the numbers on the six faces of dice are $1,2,3,5,7$ and $11$. We have to calculate the probability of those pairs whose sum of the numbers on the top faces is equal to less than $8$. Count them and apply probability formula \[Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]. Solve further.
Formula Used:
Probability formula –
\[Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Complete step by step Solution:
Given that,
Two dice are rolled, and the dices have six faces numbered $1,2,3,5,7$ and $11$.
Sample space of two rolled dices will be
Number of possible outcomes$ = 36$
Elements whose sum of the numbers on the top faces is less than or equal to $8$ are $\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,5} \right),\left( {1,7} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,5} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,5} \right),\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {7,1} \right)$
Therefore, Number of favourable outcomes $ = 17$
Using Probability formula,
\[Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
\[Probability = \dfrac{{17}}{{36}}\]
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is a good knowledge of Probability. Students must remember that the probability of an event occurring is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. A coin flip is the most basic example. When a coin is flipped, there are only two possible outcomes: heads or tails. In this question, the numbers on the faces are changed which means the sample space will be different. Don’t assume the favorable outcomes from the sample space of dice whose faces are $1,2,3,4,5,6$. Make a separate table for a better understanding.
Formula Used:
Probability formula –
\[Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Complete step by step Solution:
Given that,
Two dice are rolled, and the dices have six faces numbered $1,2,3,5,7$ and $11$.
Sample space of two rolled dices will be
| ${I}/ {II}$ | $1$ | $2$ | $3$ | $5$ | $7$ | $11$ |
| $1$ | $\left( {1,1} \right)$ | $\left( {1,2} \right)$ | $\left( {1,3} \right)$ | $\left( {1,5} \right)$ | $\left( {1,7} \right)$ | $\left( {1,11} \right)$ |
| $2$ | $\left( {2,1} \right)$ | $\left( {2,2} \right)$ | $\left( {2,3} \right)$ | $\left( {2,5} \right)$ | $\left( {2,7} \right)$ | $\left( {2,11} \right)$ |
| $3$ | $\left( {3,1} \right)$ | $\left( {3,2} \right)$ | $\left( {3,3} \right)$ | $\left( {3,5} \right)$ | $\left( {3,7} \right)$ | $\left( {3,11} \right)$ |
| $5$ | $\left( {5,1} \right)$ | $\left( {5,2} \right)$ | $\left( {5,3} \right)$ | $\left( {5,5} \right)$ | $\left( {5,7} \right)$ | $\left( {5,11} \right)$ |
| $7$ | $\left( {7,1} \right)$ | $\left( {7,2} \right)$ | $\left( {7,3} \right)$ | $\left( {7,5} \right)$ | $\left( {7,7} \right)$ | $\left( {7,11} \right)$ |
| $11$ | $\left( {11,1} \right)$ | $\left( {11,2} \right)$ | $\left( {11,3} \right)$ | $\left( {11,5} \right)$ | $\left( {11,7} \right)$ | $\left( {11,11} \right)$ |
Number of possible outcomes$ = 36$
Elements whose sum of the numbers on the top faces is less than or equal to $8$ are $\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,5} \right),\left( {1,7} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,5} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,5} \right),\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {7,1} \right)$
Therefore, Number of favourable outcomes $ = 17$
Using Probability formula,
\[Probability = \dfrac{{Number{\text{ }}of{\text{ }}favourable{\text{ }}outcomes}}{{Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
\[Probability = \dfrac{{17}}{{36}}\]
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is a good knowledge of Probability. Students must remember that the probability of an event occurring is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. A coin flip is the most basic example. When a coin is flipped, there are only two possible outcomes: heads or tails. In this question, the numbers on the faces are changed which means the sample space will be different. Don’t assume the favorable outcomes from the sample space of dice whose faces are $1,2,3,4,5,6$. Make a separate table for a better understanding.
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main Sample Paper (Set 7) with Solutions (2026)

Area of Isosceles Triangle Formula with Examples for JEE Main 2026

How to Find the Group and Period of an Element

Understanding Convex and Concave Lenses for Students

Understanding Purely Resistive, Inductive, and Capacitive Circuits

Understanding the Time Period of Simple Harmonic Motion

Other Pages
CBSE Class 10 Maths Set 2 2025 Question Paper (Standard) – PDF & Solutions

CBSE Class 10 Maths Question Paper Set 3 2025 (Standard) – PDF, Solutions & Pattern

CBSE Class 10 Maths Standard Set 2 (30/1/2) 2025: Full Paper & Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

