
The volume of a sphere is $\dfrac{4}{3}\pi {r^3}$ cubic units then the ratio of the volume of a cube to that of a sphere which will fit inside the cube is
A. $\dfrac{4}{3}:\pi $
B. $6:\pi $
C. $4:3$
D. $4:\pi $
Answer
138k+ views
Hint: It can be easily understood that in order for the sphere to fit inside the cube, diameter of the sphere must be equal to the side of the cube. Use the fact that radius is half of the diameter radius of the sphere can be found. Then all you need is to find the volume of the sphere and the cube and take the ratio of the volume of the cube to the volume of the sphere to get the desired ratio.
Complete step-by-step solution
Let us consider the volume of the sphere, which s $\dfrac{4}{3}\pi {r^3}$ cubic units.
Our objective is to determine the ratio of the volume of a cube to that of a sphere which will fit inside the cube. For that, let us take the side of the cube to be ‘a’. As we know that all the sides of the cube are equal, thus all the sides of the cube are equal to ‘a’.
We know that the volume of the cube is given by the formula, $V = {s^3}$, where ‘s’ is the side of the cube.
$ \Rightarrow {V_c} = {a^3}$
Where ${V_c}$ denotes the volume of the cube.
In order for the sphere to fit inside the cube, its diameter should be equal to the side of the cube, which is ‘a’. And we know that the radius of the sphere is half of the diameter.
$
\Rightarrow r = \dfrac{d}{2} \\
\Rightarrow r = \dfrac{a}{2} \\
$
Now, we know that the volume of the sphere of radius ‘r’ is $\dfrac{4}{3}\pi {r^3}$. Thus for the obtained radius the required volume will be obtained by replacing ‘r’ by $\dfrac{a}{2}$ in the formula for the volume of the sphere.
$
\Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} \\
\Rightarrow {V_s} = \dfrac{4}{3}\pi \times \dfrac{{{a^3}}}{8} \\
\Rightarrow {V_s} = \dfrac{{\pi {a^3}}}{{3 \times 2}} \\
\Rightarrow {V_s} = \dfrac{{\pi {a^3}}}{6} \\
$
Where ${V_s}$ denotes the volume of the sphere.
Finally we take the ratio of the volume of the cube given by ${V_c}$ and the volume of the sphere given by ${V_s}$, to get the final answer.
$
\dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{{\pi {a^3}}}{6}}} \\
\Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{6}{\pi } \\
$
Hence, the ratio of the volume of a cube to that of a sphere which will fit inside the cube is $6:\pi $, which is option (B).
Note: While finding the volumes, the correct formula should be applied, do not mix up the formula in the conic. You can star mark the fact that in order for the sphere to fit in the cube, it should have the diameter equal to that of the side of the cube, neither more nor less. Also, while taking the ratio, carefully do the volume of the cube to the volume of the sphere and not the other way around.
Complete step-by-step solution
Let us consider the volume of the sphere, which s $\dfrac{4}{3}\pi {r^3}$ cubic units.
Our objective is to determine the ratio of the volume of a cube to that of a sphere which will fit inside the cube. For that, let us take the side of the cube to be ‘a’. As we know that all the sides of the cube are equal, thus all the sides of the cube are equal to ‘a’.
We know that the volume of the cube is given by the formula, $V = {s^3}$, where ‘s’ is the side of the cube.
$ \Rightarrow {V_c} = {a^3}$
Where ${V_c}$ denotes the volume of the cube.
In order for the sphere to fit inside the cube, its diameter should be equal to the side of the cube, which is ‘a’. And we know that the radius of the sphere is half of the diameter.
$
\Rightarrow r = \dfrac{d}{2} \\
\Rightarrow r = \dfrac{a}{2} \\
$
Now, we know that the volume of the sphere of radius ‘r’ is $\dfrac{4}{3}\pi {r^3}$. Thus for the obtained radius the required volume will be obtained by replacing ‘r’ by $\dfrac{a}{2}$ in the formula for the volume of the sphere.
$
\Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} \\
\Rightarrow {V_s} = \dfrac{4}{3}\pi \times \dfrac{{{a^3}}}{8} \\
\Rightarrow {V_s} = \dfrac{{\pi {a^3}}}{{3 \times 2}} \\
\Rightarrow {V_s} = \dfrac{{\pi {a^3}}}{6} \\
$
Where ${V_s}$ denotes the volume of the sphere.
Finally we take the ratio of the volume of the cube given by ${V_c}$ and the volume of the sphere given by ${V_s}$, to get the final answer.
$
\dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{{\pi {a^3}}}{6}}} \\
\Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{6}{\pi } \\
$
Hence, the ratio of the volume of a cube to that of a sphere which will fit inside the cube is $6:\pi $, which is option (B).
Note: While finding the volumes, the correct formula should be applied, do not mix up the formula in the conic. You can star mark the fact that in order for the sphere to fit in the cube, it should have the diameter equal to that of the side of the cube, neither more nor less. Also, while taking the ratio, carefully do the volume of the cube to the volume of the sphere and not the other way around.
Recently Updated Pages
Difference Between Square and Rectangle: JEE Main 2024

Difference Between Cube and Cuboid: JEE Main 2024

Difference Between Petrol and Diesel Engine: JEE Main 2024

Difference Between LCD and LED: JEE Main 2025

Online JEE (Main+Adv.) 2023 Repeater course for Class 12 - Aakrosh Vedantu

Boron Family for IIT JEE | Properties and Facts of Boron JEE Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Raoult's Law with Examples

JEE Main 2025 Question Papers: January Session (22, 23, 24, 28, 29) - All Papers, Answer Keys & Analysis in One Place

Other Pages
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Surface Areas and Volumes Class 10 Notes CBSE Maths Chapter 12 (Free PDF Download)
