
The photoelectric threshold wavelength for potassium (work function being 2 eV) is
(A) 310 nm
(B) 620 nm
(C) 6200 nm
(D) 3100 nm
Answer
232.8k+ views
Hint The threshold wavelength is the minimum wavelength of the light beam which is incident on the material required for emission of electrons. It is related to the work function with Planck’s constant and speed of light. Substitute the data in the expression to obtain the value of$\lambda $.
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

