
How much load of specific gravity \[11\] should be added to a piece of cork of specific gravity $0.2$ weighing $10g$ so that it may just float on water?
(A) $4.4g$
(B) $44g$
(C) $440g$
(D) $2.2g$
Answer
215.7k+ views
Hint: Specific Gravity is defined as the ratio of density of a given object to the density of water. For the cork to just float on water, it has to be in complete vertical equilibrium, that is the buoyant force has to be equal to the total weight.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

