
Let \[x\], \[y\] and \[z\] be positive real numbers. Suppose \[x\], \[y\] and \[z\] are the lengths of the sides of a triangle opposite to its angles \[X\], \[Y\]and \[Z\] respectively. If \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\], then which are the that are statements is/are true?
A.\[2Y = X + Z\]
B.\[Y = X + Z\]
C.\[\tan \dfrac{X}{2} = \dfrac{x}{{y + z}}\]
D.\[{x^2} + {z^2} - {y^2} = xz\]
Answer
218.1k+ views
Hint: To solve the question, we will use the formulas of properties of triangles, Like semi-perimeter of triangle, i.e., \[2S = x + y + z\], and area of triangle with the sides of the triangle \[x\], \[y\]and \[z\]i.e., \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \] and using \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], and after simplifying we will get the required result.
Formula Used:
We will use the formula properties of triangles,
\[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[2S = x + y + z\]
\[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], \[\tan \dfrac{Z}{2} = \dfrac{\Delta }{{s(s - z)}}\],
\[\tan \dfrac{X}{2} = \sqrt {\dfrac{{(s - y)(s - z)}}{{s(s - x)}}} \], where\[x\], \[y\]and \[z\]are the sides of the triangle.
\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\].
Complete Step-by-Step Solution:
Given that\[x\], \[y\]and \[z\] be positive real numbers. Suppose\[x\], \[y\]and \[z\] are the lengths of the sides of a triangle opposite to its angles\[X\], \[Y\]and \[Z\], respectively, and \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\],
Let, \[2S = x + y + z\] and
\[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\]
\[ \Rightarrow \dfrac{\Delta }{{s(s - x)}} + \dfrac{\Delta }{{s(s - z)}} = \dfrac{{2y}}{{2s}}\]
Now we will simplify, we will get,
\[ \Rightarrow \dfrac{\Delta }{s}\left( {\dfrac{{2s - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = \dfrac{y}{s}\]
Now we will further simplify,
\[ \Rightarrow \Delta \left( {\dfrac{{x + y + z - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will eliminate the like terms,
\[ \Rightarrow \Delta \left( {\dfrac{y}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will further simplify,
\[ \Rightarrow \Delta = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will square on both sides,
\[ \Rightarrow {\Delta ^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will use the formula, \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[ \Rightarrow {\left( {\sqrt {s(s - x)(s - y)(s - z)} } \right)^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will simplify, we will get,
\[ \Rightarrow \left( {s(s - x)(s - y)(s - z)} \right) = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow \left( {s(s - y)} \right) = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will use the formula, \[2S = x + y + z\],
\[ \Rightarrow \left( {\dfrac{{x + y + z}}{2}} \right)\left( {\dfrac{{x + y + z}}{2} - y} \right) = \left( {\dfrac{{x + y + z}}{2} - x} \right)\left( {\dfrac{{x + y + z}}{2} - z} \right)\]
Now we will simplify,
\[ \Rightarrow \left( {x + y + z} \right)\left( {x + z - y} \right) = \left( {y + z - x} \right)\left( {x + y - z} \right)\]
Now we will simplify,
\[ \Rightarrow {\left( {x + z} \right)^2} - {y^2} = {y^2} - {\left( {z - x} \right)^2}\]
Now we will further simplify we will get,
\[ \Rightarrow {\left( {x + z} \right)^2} + {\left( {z - x} \right)^2} = 2{y^2}\]
Now we will use the formula, \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\]
\[ \Rightarrow 2\left( {{x^2} + {z^2}} \right) = 2{y^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow {x^2} + {z^2} = {y^2}\],
Now the above equation is in form of Pythagorean Theorem, with right triangle at Y,
By drawing the diagram,

Now using the formula \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
As we can say,
\[s - x = \dfrac{{x + y + z}}{2} - x\]
\[ = \dfrac{{}}{{}}\] \[\dfrac{{y + z - x}}{2}\]
\[s(s - x) = \left( {\dfrac{{y + z + x}}{2}} \right)\left( {\dfrac{{y + z - x}}{2}} \right)\]
=\[\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}\]
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
Now we will simplify, we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{{y^2} + {z^2} + 2yz - {x^2}}}\]
Now we know that, \[{y^2} = {x^2} + {z^2}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2{z^2} + 2yz}}\]
Now we will simplify then we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2z\left( {z + y} \right)}}\]
Now eliminating the like terms,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{x}{{z + y}}\]
And,
One angle is the right angle then the other two angles give a sum equal to 90 degrees because all angles of the triangle sum up 180 degrees. Therefore option B is correct.
The correct option is B and C.
Note If we know the three sides and three angles of a triangle, then we can know completely about the triangle, thus if we know any of the three elements such as two angles and one side we can find the other elements using the formulae. This process is called the solution of triangles.
Formula Used:
We will use the formula properties of triangles,
\[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[2S = x + y + z\]
\[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], \[\tan \dfrac{Z}{2} = \dfrac{\Delta }{{s(s - z)}}\],
\[\tan \dfrac{X}{2} = \sqrt {\dfrac{{(s - y)(s - z)}}{{s(s - x)}}} \], where\[x\], \[y\]and \[z\]are the sides of the triangle.
\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\].
Complete Step-by-Step Solution:
Given that\[x\], \[y\]and \[z\] be positive real numbers. Suppose\[x\], \[y\]and \[z\] are the lengths of the sides of a triangle opposite to its angles\[X\], \[Y\]and \[Z\], respectively, and \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\],
Let, \[2S = x + y + z\] and
\[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\]
\[ \Rightarrow \dfrac{\Delta }{{s(s - x)}} + \dfrac{\Delta }{{s(s - z)}} = \dfrac{{2y}}{{2s}}\]
Now we will simplify, we will get,
\[ \Rightarrow \dfrac{\Delta }{s}\left( {\dfrac{{2s - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = \dfrac{y}{s}\]
Now we will further simplify,
\[ \Rightarrow \Delta \left( {\dfrac{{x + y + z - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will eliminate the like terms,
\[ \Rightarrow \Delta \left( {\dfrac{y}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will further simplify,
\[ \Rightarrow \Delta = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will square on both sides,
\[ \Rightarrow {\Delta ^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will use the formula, \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[ \Rightarrow {\left( {\sqrt {s(s - x)(s - y)(s - z)} } \right)^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will simplify, we will get,
\[ \Rightarrow \left( {s(s - x)(s - y)(s - z)} \right) = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow \left( {s(s - y)} \right) = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will use the formula, \[2S = x + y + z\],
\[ \Rightarrow \left( {\dfrac{{x + y + z}}{2}} \right)\left( {\dfrac{{x + y + z}}{2} - y} \right) = \left( {\dfrac{{x + y + z}}{2} - x} \right)\left( {\dfrac{{x + y + z}}{2} - z} \right)\]
Now we will simplify,
\[ \Rightarrow \left( {x + y + z} \right)\left( {x + z - y} \right) = \left( {y + z - x} \right)\left( {x + y - z} \right)\]
Now we will simplify,
\[ \Rightarrow {\left( {x + z} \right)^2} - {y^2} = {y^2} - {\left( {z - x} \right)^2}\]
Now we will further simplify we will get,
\[ \Rightarrow {\left( {x + z} \right)^2} + {\left( {z - x} \right)^2} = 2{y^2}\]
Now we will use the formula, \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\]
\[ \Rightarrow 2\left( {{x^2} + {z^2}} \right) = 2{y^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow {x^2} + {z^2} = {y^2}\],
Now the above equation is in form of Pythagorean Theorem, with right triangle at Y,
By drawing the diagram,

Now using the formula \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
As we can say,
\[s - x = \dfrac{{x + y + z}}{2} - x\]
\[ = \dfrac{{}}{{}}\] \[\dfrac{{y + z - x}}{2}\]
\[s(s - x) = \left( {\dfrac{{y + z + x}}{2}} \right)\left( {\dfrac{{y + z - x}}{2}} \right)\]
=\[\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}\]
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
Now we will simplify, we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{{y^2} + {z^2} + 2yz - {x^2}}}\]
Now we know that, \[{y^2} = {x^2} + {z^2}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2{z^2} + 2yz}}\]
Now we will simplify then we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2z\left( {z + y} \right)}}\]
Now eliminating the like terms,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{x}{{z + y}}\]
And,
One angle is the right angle then the other two angles give a sum equal to 90 degrees because all angles of the triangle sum up 180 degrees. Therefore option B is correct.
The correct option is B and C.
Note If we know the three sides and three angles of a triangle, then we can know completely about the triangle, thus if we know any of the three elements such as two angles and one side we can find the other elements using the formulae. This process is called the solution of triangles.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Square vs Rectangle: Key Differences Explained Simply

Line vs Line Segment: Key Differences Explained for Students

Cube vs Cuboid: Key Differences Explained for Students

Highest Number of Students Appeared in JEE Main 2024 | NTA Data

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

