
Let \[x\], \[y\] and \[z\] be positive real numbers. Suppose \[x\], \[y\] and \[z\] are the lengths of the sides of a triangle opposite to its angles \[X\], \[Y\]and \[Z\] respectively. If \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\], then which are the that are statements is/are true?
A.\[2Y = X + Z\]
B.\[Y = X + Z\]
C.\[\tan \dfrac{X}{2} = \dfrac{x}{{y + z}}\]
D.\[{x^2} + {z^2} - {y^2} = xz\]
Answer
233.1k+ views
Hint: To solve the question, we will use the formulas of properties of triangles, Like semi-perimeter of triangle, i.e., \[2S = x + y + z\], and area of triangle with the sides of the triangle \[x\], \[y\]and \[z\]i.e., \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \] and using \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], and after simplifying we will get the required result.
Formula Used:
We will use the formula properties of triangles,
\[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[2S = x + y + z\]
\[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], \[\tan \dfrac{Z}{2} = \dfrac{\Delta }{{s(s - z)}}\],
\[\tan \dfrac{X}{2} = \sqrt {\dfrac{{(s - y)(s - z)}}{{s(s - x)}}} \], where\[x\], \[y\]and \[z\]are the sides of the triangle.
\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\].
Complete Step-by-Step Solution:
Given that\[x\], \[y\]and \[z\] be positive real numbers. Suppose\[x\], \[y\]and \[z\] are the lengths of the sides of a triangle opposite to its angles\[X\], \[Y\]and \[Z\], respectively, and \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\],
Let, \[2S = x + y + z\] and
\[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\]
\[ \Rightarrow \dfrac{\Delta }{{s(s - x)}} + \dfrac{\Delta }{{s(s - z)}} = \dfrac{{2y}}{{2s}}\]
Now we will simplify, we will get,
\[ \Rightarrow \dfrac{\Delta }{s}\left( {\dfrac{{2s - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = \dfrac{y}{s}\]
Now we will further simplify,
\[ \Rightarrow \Delta \left( {\dfrac{{x + y + z - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will eliminate the like terms,
\[ \Rightarrow \Delta \left( {\dfrac{y}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will further simplify,
\[ \Rightarrow \Delta = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will square on both sides,
\[ \Rightarrow {\Delta ^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will use the formula, \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[ \Rightarrow {\left( {\sqrt {s(s - x)(s - y)(s - z)} } \right)^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will simplify, we will get,
\[ \Rightarrow \left( {s(s - x)(s - y)(s - z)} \right) = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow \left( {s(s - y)} \right) = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will use the formula, \[2S = x + y + z\],
\[ \Rightarrow \left( {\dfrac{{x + y + z}}{2}} \right)\left( {\dfrac{{x + y + z}}{2} - y} \right) = \left( {\dfrac{{x + y + z}}{2} - x} \right)\left( {\dfrac{{x + y + z}}{2} - z} \right)\]
Now we will simplify,
\[ \Rightarrow \left( {x + y + z} \right)\left( {x + z - y} \right) = \left( {y + z - x} \right)\left( {x + y - z} \right)\]
Now we will simplify,
\[ \Rightarrow {\left( {x + z} \right)^2} - {y^2} = {y^2} - {\left( {z - x} \right)^2}\]
Now we will further simplify we will get,
\[ \Rightarrow {\left( {x + z} \right)^2} + {\left( {z - x} \right)^2} = 2{y^2}\]
Now we will use the formula, \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\]
\[ \Rightarrow 2\left( {{x^2} + {z^2}} \right) = 2{y^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow {x^2} + {z^2} = {y^2}\],
Now the above equation is in form of Pythagorean Theorem, with right triangle at Y,
By drawing the diagram,

Now using the formula \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
As we can say,
\[s - x = \dfrac{{x + y + z}}{2} - x\]
\[ = \dfrac{{}}{{}}\] \[\dfrac{{y + z - x}}{2}\]
\[s(s - x) = \left( {\dfrac{{y + z + x}}{2}} \right)\left( {\dfrac{{y + z - x}}{2}} \right)\]
=\[\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}\]
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
Now we will simplify, we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{{y^2} + {z^2} + 2yz - {x^2}}}\]
Now we know that, \[{y^2} = {x^2} + {z^2}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2{z^2} + 2yz}}\]
Now we will simplify then we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2z\left( {z + y} \right)}}\]
Now eliminating the like terms,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{x}{{z + y}}\]
And,
One angle is the right angle then the other two angles give a sum equal to 90 degrees because all angles of the triangle sum up 180 degrees. Therefore option B is correct.
The correct option is B and C.
Note If we know the three sides and three angles of a triangle, then we can know completely about the triangle, thus if we know any of the three elements such as two angles and one side we can find the other elements using the formulae. This process is called the solution of triangles.
Formula Used:
We will use the formula properties of triangles,
\[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[2S = x + y + z\]
\[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\], \[\tan \dfrac{Z}{2} = \dfrac{\Delta }{{s(s - z)}}\],
\[\tan \dfrac{X}{2} = \sqrt {\dfrac{{(s - y)(s - z)}}{{s(s - x)}}} \], where\[x\], \[y\]and \[z\]are the sides of the triangle.
\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\].
Complete Step-by-Step Solution:
Given that\[x\], \[y\]and \[z\] be positive real numbers. Suppose\[x\], \[y\]and \[z\] are the lengths of the sides of a triangle opposite to its angles\[X\], \[Y\]and \[Z\], respectively, and \[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\],
Let, \[2S = x + y + z\] and
\[\tan \dfrac{X}{2} + \tan \dfrac{Z}{2} = \dfrac{{2y}}{{x + y + z}}\]
\[ \Rightarrow \dfrac{\Delta }{{s(s - x)}} + \dfrac{\Delta }{{s(s - z)}} = \dfrac{{2y}}{{2s}}\]
Now we will simplify, we will get,
\[ \Rightarrow \dfrac{\Delta }{s}\left( {\dfrac{{2s - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = \dfrac{y}{s}\]
Now we will further simplify,
\[ \Rightarrow \Delta \left( {\dfrac{{x + y + z - (x + z)}}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will eliminate the like terms,
\[ \Rightarrow \Delta \left( {\dfrac{y}{{\left( {s - x} \right)\left( {s - z} \right)}}} \right) = y\]
Now we will further simplify,
\[ \Rightarrow \Delta = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will square on both sides,
\[ \Rightarrow {\Delta ^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will use the formula, \[\Delta = \sqrt {s(s - x)(s - y)(s - z)} \]
\[ \Rightarrow {\left( {\sqrt {s(s - x)(s - y)(s - z)} } \right)^2} = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will simplify, we will get,
\[ \Rightarrow \left( {s(s - x)(s - y)(s - z)} \right) = {\left( {s - x} \right)^2}{\left( {s - z} \right)^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow \left( {s(s - y)} \right) = \left( {s - x} \right)\left( {s - z} \right)\]
Now we will use the formula, \[2S = x + y + z\],
\[ \Rightarrow \left( {\dfrac{{x + y + z}}{2}} \right)\left( {\dfrac{{x + y + z}}{2} - y} \right) = \left( {\dfrac{{x + y + z}}{2} - x} \right)\left( {\dfrac{{x + y + z}}{2} - z} \right)\]
Now we will simplify,
\[ \Rightarrow \left( {x + y + z} \right)\left( {x + z - y} \right) = \left( {y + z - x} \right)\left( {x + y - z} \right)\]
Now we will simplify,
\[ \Rightarrow {\left( {x + z} \right)^2} - {y^2} = {y^2} - {\left( {z - x} \right)^2}\]
Now we will further simplify we will get,
\[ \Rightarrow {\left( {x + z} \right)^2} + {\left( {z - x} \right)^2} = 2{y^2}\]
Now we will use the formula, \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\]
\[ \Rightarrow 2\left( {{x^2} + {z^2}} \right) = 2{y^2}\]
Now we will eliminate the like terms,
\[ \Rightarrow {x^2} + {z^2} = {y^2}\],
Now the above equation is in form of Pythagorean Theorem, with right triangle at Y,
By drawing the diagram,

Now using the formula \[\tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{\Delta }{{s(s - x)}} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
As we can say,
\[s - x = \dfrac{{x + y + z}}{2} - x\]
\[ = \dfrac{{}}{{}}\] \[\dfrac{{y + z - x}}{2}\]
\[s(s - x) = \left( {\dfrac{{y + z + x}}{2}} \right)\left( {\dfrac{{y + z - x}}{2}} \right)\]
=\[\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}\]
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{\dfrac{1}{2}xz}}{{\dfrac{{{{\left( {y + z} \right)}^2} - {x^2}}}{4}}}\]
Now we will simplify, we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{{y^2} + {z^2} + 2yz - {x^2}}}\]
Now we know that, \[{y^2} = {x^2} + {z^2}\],
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2{z^2} + 2yz}}\]
Now we will simplify then we will get,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{{2xz}}{{2z\left( {z + y} \right)}}\]
Now eliminating the like terms,
\[ \Rightarrow \tan \dfrac{X}{2} = \dfrac{x}{{z + y}}\]
And,
One angle is the right angle then the other two angles give a sum equal to 90 degrees because all angles of the triangle sum up 180 degrees. Therefore option B is correct.
The correct option is B and C.
Note If we know the three sides and three angles of a triangle, then we can know completely about the triangle, thus if we know any of the three elements such as two angles and one side we can find the other elements using the formulae. This process is called the solution of triangles.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

