
Let p and q be two positive numbers such that \[p + q = 2\] and \[{p^4} + {q^4} = 272\] then p and q are roots of the equation:
A. \[{x^2} - 2x + 2 = 0\]
B. \[{x^2} - 2x + 8 = 0\]
C. \[{x^2} - 2x + 136 = 0\]
D. \[{x^2} - 2x + 16 = 0\]
Answer
232.8k+ views
Hint: We know that the roots of the equation are the values at which the function's value becomes zero or the graph of the functions intersects the x-axis and the roots of an equation are those values on which an equation is equal to zero and an equation with two real roots is represented as:
\[{x^2} - \left( {sum\,\,of\,the\,\,roots} \right)\,x + \left( {product\,of\,the\,\,roots} \right) = 0\]
Formula used:
1. \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
2. \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step solution:
We are given that \[p + q = 2...\left( 1 \right)\] and
\[{p^4} + {q^4} = 272...\left( 2 \right)\]
Now we add and subtract \[2{p^2}{q^2}\] in equation (2), and we get
\[{p^4} + {q^4} + 2{p^2}{q^2} - 2{p^2}{q^2} = 272\]
Now we know that \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
So, \[{\left( {{p^2} + {q^2}} \right)^2} - 2{p^2}{q^2} = 272\]
Now we add and subtract \[2pq\] in the above equation, and we get
\[{\left( {{p^2} + {q^2} + 2pq - 2pq} \right)^2} - 2{p^2}{q^2} = 272\]
Now again we apply \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {{{\left( {p + q} \right)}^2} - 2pq} \right)^2} - 2{p^2}{q^2} = 272\]
Now it is given that \[p + q = 2\]
Now we assume that \[pq\, = \,A\]
So,
\[
{\left( {4 - 2A} \right)^2} - 2{A^2}\, = 272 \\
16 + 4{A^2} - 16A - 2{A^2} = 272 \\
{A^2} - 8A - 128 = 0 \\
\]
Now we find the real roots of the equation, we get
\[
A = \dfrac{{8 \pm \sqrt {64 + 4 \times 1 \times 128} }}{2} \\
= \dfrac{{8 \pm \sqrt {576} }}{2} \\
= \dfrac{{8 \pm \,24}}{2} \\
= 4 \pm 12 \\
\]
\[A = 16\,,\, - 8\]
So, \[pq = \,16\,,\, - 8\]
Now we know that the standard equation of line for two real roots is:
\[{x^2} - \left( {sum\,\,of\,the\,\,roots} \right)\,x + \left( {product\,of\,the\,\,roots} \right) = 0\]
By substituting the above value in the standard equation, we get
When \[pq = 16\]
\[
{x^2} - \left( {p + q} \right)x + pq = 0 \\
{x^2} - 2x - 8 = 0 \\
\\
\]
and when \[pq = - 8\] that means both p and q can’t be positive which contradicts the given condition.
Hence, option (D) is correct
Note: Real roots of the equation do not exist if the quantity inside the square root, which is the discriminant, is negative. Students frequently overlook the negative sign and write the correct answer. We may also use the factorization approach to discover the roots of quadratic equations.
\[{x^2} - \left( {sum\,\,of\,the\,\,roots} \right)\,x + \left( {product\,of\,the\,\,roots} \right) = 0\]
Formula used:
1. \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
2. \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step solution:
We are given that \[p + q = 2...\left( 1 \right)\] and
\[{p^4} + {q^4} = 272...\left( 2 \right)\]
Now we add and subtract \[2{p^2}{q^2}\] in equation (2), and we get
\[{p^4} + {q^4} + 2{p^2}{q^2} - 2{p^2}{q^2} = 272\]
Now we know that \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
So, \[{\left( {{p^2} + {q^2}} \right)^2} - 2{p^2}{q^2} = 272\]
Now we add and subtract \[2pq\] in the above equation, and we get
\[{\left( {{p^2} + {q^2} + 2pq - 2pq} \right)^2} - 2{p^2}{q^2} = 272\]
Now again we apply \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {{{\left( {p + q} \right)}^2} - 2pq} \right)^2} - 2{p^2}{q^2} = 272\]
Now it is given that \[p + q = 2\]
Now we assume that \[pq\, = \,A\]
So,
\[
{\left( {4 - 2A} \right)^2} - 2{A^2}\, = 272 \\
16 + 4{A^2} - 16A - 2{A^2} = 272 \\
{A^2} - 8A - 128 = 0 \\
\]
Now we find the real roots of the equation, we get
\[
A = \dfrac{{8 \pm \sqrt {64 + 4 \times 1 \times 128} }}{2} \\
= \dfrac{{8 \pm \sqrt {576} }}{2} \\
= \dfrac{{8 \pm \,24}}{2} \\
= 4 \pm 12 \\
\]
\[A = 16\,,\, - 8\]
So, \[pq = \,16\,,\, - 8\]
Now we know that the standard equation of line for two real roots is:
\[{x^2} - \left( {sum\,\,of\,the\,\,roots} \right)\,x + \left( {product\,of\,the\,\,roots} \right) = 0\]
By substituting the above value in the standard equation, we get
When \[pq = 16\]
\[
{x^2} - \left( {p + q} \right)x + pq = 0 \\
{x^2} - 2x - 8 = 0 \\
\\
\]
and when \[pq = - 8\] that means both p and q can’t be positive which contradicts the given condition.
Hence, option (D) is correct
Note: Real roots of the equation do not exist if the quantity inside the square root, which is the discriminant, is negative. Students frequently overlook the negative sign and write the correct answer. We may also use the factorization approach to discover the roots of quadratic equations.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Square vs Rhombus: Key Differences Explained for Students

Power vs Exponent: Key Differences Explained for Students

Arithmetic Mean Formula Explained Simply

Algebraic Formula: Key Concepts & Easy Examples

Trending doubts
JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

JEE Main 2026 January 21 Shift 2 Question Papers and Analysis OUT Check Student Reactions

JEE Main 2026 Dress Code for Male & Female Candidates

JEE Main 2025 24 Jan Shift 2 Question Paper with Solutions

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Other Pages
Surface Areas and Volumes Class 10 Maths Chapter 12 CBSE Notes - 2025-26

CBSE Class 10 Maths Set 2 2025 Question Paper (Standard) – PDF & Solutions

CBSE Class 10 Maths Question Paper Set 2 430/1/2 2025 (Basic): PDF, Answers & Analysis

CBSE Class 10 Maths Question Paper Set 1 (Basic) 430/5/1 – 2025 with Answers

CBSE Class 10 Maths Set 1 2025 Question Paper (Standard)

CBSE Class 10 Maths Question Paper Set 2 2025 with Solutions

