
In a high school, a committee has to be formed from a group of 6 boys ${{M}_{1}},{{M}_{2}},{{M}_{3}},{{M}_{4}},{{M}_{5}},{{M}_{6}}$ and 5 girls \[{{G}_{1}},{{G}_{2}},{{G}_{3}},{{G}_{4}},{{G}_{5}}.\].
(i) Let ${{\alpha }_{1}}$ be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 boys and 2 girls.
(ii) Let ${{\alpha }_{2}}$ be the total number of ways in which the committee can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
(iii) Let ${{\alpha }_{3}}$ be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls.
(iv) Let ${{\alpha }_{4}}$ be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both ${{M}_{1}}$ and ${{G}_{1}}$ are NOT in the committee together.
\[\begin{matrix}
\text{List-I} & \text{List-II} \\
\text{P}\text{.The value of}~{{\alpha }_{1}} & \text{1}.\text{136} \\
\text{Q}\text{.The value of}~{{\alpha }_{2}} & \text{2}.\text{189} \\
\text{R}\text{.The value of}~{{\alpha }_{3}} & \text{3}.\text{192} \\
\text{S}\text{.The value of}~{{\alpha }_{4}} & \text{4}.\text{2}00 \\
{} & \text{5}.\text{381} \\
{} & \text{6}.\text{461} \\
\end{matrix}\]
The correct option is
A.$P\to 4,Q\to 6,R\to 2,S\to 1$\[\]
B. $P\to 1,Q\to 4,R\to 2,S\to 3$\[\]
C. $P\to 4,Q\to 6,R\to 5,S\to 2$\[\]
D. $P\to 4,Q\to 2,R\to 3,S\to 1$\[\]
Answer
152.4k+ views
Hint: Use the formula for combination and fundamental principle of counting to find out the values of ${{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},{{\alpha }_{4}},{{\alpha }_{5}}$ using selection from the groups of girl and boys. Then you can match the options with list-I and list-II
Complete step-by-step answer:
We know that the selection of $r$ entities from $n$ unique entities is given by $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. We expand in both denominator and numerator as
\[\begin{align}
& ^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)\left( n-r \right)...1}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)\left( n-r \right)!}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)}{r!} \\
\end{align}\]
We also know by fundamental principle of counting selection of $r$ entities from $n$ and then $q$ entities from $m$ is given by $^{m}{{C}_{q}}^{n}{{C}_{r}}$. So the number of groups that can be formed when we form a group of ,\[\]
(i)5 members having 3 girls and 2 boys can be explained with the choice of 3 girls from the given 6 girls ( here $n=6,r=3$) simultaneously with the choice of 2 boys from the given 5 boys ( here $m=5,q=2$) . Then using the formula of $^{n}{{C}_{r}}$, we get $^6{C_3}^5{C_2} = \dfrac{{6.5.4}}{{3!}}\dfrac{{5.4}}{{2!}} = \dfrac{{6.5.4.5.4}}{{1.2.31.2}} = 200$ \[\]
(ii) at least 2 members, and having an equal number of boys and girls. We can find out possible combinations of at least one boy and one girl and continue to increase by one for both boys and girls $^{6}{{C}_{1}}^{5}{{C}_{1}}{{+}^{6}}{{C}_{2}}^{5}{{C}_{2}}{{+}^{6}}{{C}_{3}}^{5}{{C}_{3}}{{+}^{6}}{{C}_{4}}^{5}{{C}_{4}}{{+}^{6}}{{C}_{5}}^{5}{{C}_{5}}=461$ . So $Q\to 6$ \[\]
(iii) 5 members, at least 2 of them being girls is $^{6}{{C}_{3}}^{5}{{C}_{2}}{{+}^{6}}{{C}_{2}}^{5}{{C}_{3}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{4}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{5}}=381$. Here if we take girls rest will be boys and then continue to increase the number of girls by one. So $R\to 5$. \[\]
(iv) 4 members, having at least 2 girls and such that both ${{M}_{1}}$ and ${{G}_{1}}$ are NOT in the committee together is the sum of differences between all possible selection and selections of ${{M}_{1}}$ and ${{G}_{1}}$. That is $^{6}{{C}_{2}}^{5}{{C}_{2}}{{-}^{5}}{{C}_{1}}^{4}{{C}_{1}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{3}}{{-}^{1}}{{C}_{1}}^{4}{{C}_{2}}{{+}^{5}}{{C}_{4}}=189$. So $S\to 2$.\[\]
So, the correct answer is “Option C”.
Note: The proper selection is important while solving simultaneous combinatorial problems of this type especially in the case(iv) where we have to deal with special case exclusion because we have to take the difference from the total.
Complete step-by-step answer:
We know that the selection of $r$ entities from $n$ unique entities is given by $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. We expand in both denominator and numerator as
\[\begin{align}
& ^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)\left( n-r \right)...1}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)\left( n-r \right)!}{r!\left( n-r \right)!} \\
& =\dfrac{n\left( n-1 \right)...\left( n-r+1 \right)}{r!} \\
\end{align}\]
We also know by fundamental principle of counting selection of $r$ entities from $n$ and then $q$ entities from $m$ is given by $^{m}{{C}_{q}}^{n}{{C}_{r}}$. So the number of groups that can be formed when we form a group of ,\[\]
(i)5 members having 3 girls and 2 boys can be explained with the choice of 3 girls from the given 6 girls ( here $n=6,r=3$) simultaneously with the choice of 2 boys from the given 5 boys ( here $m=5,q=2$) . Then using the formula of $^{n}{{C}_{r}}$, we get $^6{C_3}^5{C_2} = \dfrac{{6.5.4}}{{3!}}\dfrac{{5.4}}{{2!}} = \dfrac{{6.5.4.5.4}}{{1.2.31.2}} = 200$ \[\]
(ii) at least 2 members, and having an equal number of boys and girls. We can find out possible combinations of at least one boy and one girl and continue to increase by one for both boys and girls $^{6}{{C}_{1}}^{5}{{C}_{1}}{{+}^{6}}{{C}_{2}}^{5}{{C}_{2}}{{+}^{6}}{{C}_{3}}^{5}{{C}_{3}}{{+}^{6}}{{C}_{4}}^{5}{{C}_{4}}{{+}^{6}}{{C}_{5}}^{5}{{C}_{5}}=461$ . So $Q\to 6$ \[\]
(iii) 5 members, at least 2 of them being girls is $^{6}{{C}_{3}}^{5}{{C}_{2}}{{+}^{6}}{{C}_{2}}^{5}{{C}_{3}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{4}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{5}}=381$. Here if we take girls rest will be boys and then continue to increase the number of girls by one. So $R\to 5$. \[\]
(iv) 4 members, having at least 2 girls and such that both ${{M}_{1}}$ and ${{G}_{1}}$ are NOT in the committee together is the sum of differences between all possible selection and selections of ${{M}_{1}}$ and ${{G}_{1}}$. That is $^{6}{{C}_{2}}^{5}{{C}_{2}}{{-}^{5}}{{C}_{1}}^{4}{{C}_{1}}{{+}^{6}}{{C}_{1}}^{5}{{C}_{3}}{{-}^{1}}{{C}_{1}}^{4}{{C}_{2}}{{+}^{5}}{{C}_{4}}=189$. So $S\to 2$.\[\]
So, the correct answer is “Option C”.
Note: The proper selection is important while solving simultaneous combinatorial problems of this type especially in the case(iv) where we have to deal with special case exclusion because we have to take the difference from the total.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
