Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 9: Sequences and Series - Exercise 9.2

ffImage
Last updated date: 17th Apr 2024
Total views: 572.1k
Views today: 9.72k

NCERT Solutions for Class 11 Maths Chapter 9 Sequences and Series

Free PDF download of NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.2 (Ex 9.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 11 Maths Chapter 9 Sequences and Series Exercise 9.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 11

Subject:

Class 11 Maths

Chapter Name:

Chapter 9 - Sequences and Series

Exercise:

Exercise - 9.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class 11 Mathematics Chapter 9 - Sequences and Series

Exercise 9.2 

1. Find the sum of odd integers from 1 to 2001.

Ans: In between 1 and 2001, the odd integers are 1, 3, 5,…, 1999, 2001.

The given sequence forms an A.P. with its first term, a = 1 and common difference, d = 2

Here, 

$a+(n-1)d=2001$ 

   $\Rightarrow {\text{1}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)(2)}}\,{\text{ = }}\,{\text{2001}}$ 

  $ \Rightarrow \,{\text{2n}}\,{\text{ - }}\,{\text{2}}\,{\text{ = 2001}} $

$   \Rightarrow \,{\text{n}}\,{\text{ = }}\,{\text{1001}}$ 

  ${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$ 

 $ \therefore \,{\text{Sn}}\,{\text{ = }}\,\dfrac{1001}{2}[2\times 1+(1001-1)\times 2]$

${\text{Sn}}\,{\text{ = }}\,\dfrac{1001}{2}[2+1000\times 2]$

${\text{Sn}}\,{\text{ = }}\, 1001\times 1001 $

${\text{ = }}\,{\text{1002001}}$

Therefore, the sum of odd numbers between 1 and 2001 is 1002001.


2. Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.

Ans: The multiples of 5 lying between 100 and 1000 are 105, 110,…, 995.

This sequence forms an A.P. with its first term, a = 105 and common difference, d = 5

${\text{a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}\, = \,995$ 

  $ \Rightarrow {\text{105}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)(5)}}\,{\text{ = }}\,995$ 

  $ \Rightarrow \,({\text{n}}\,{\text{ - }}\,{\text{1}})5\,{\text{ = 995}}\,{\text{ - }}\,{\text{105}}\,{\text{ = }}\,{\text{890}} $

  $ \Rightarrow \,{\text{n}}\,{\text{ - }}\,{\text{1}}\,{\text{ = }}\,178 $

   $\Rightarrow \,{\text{n}}\,{\text{ = }}\,{\text{179}}$   

$\therefore \,{\text{Sn}}\,{\text{ = }}\,\dfrac{{{\text{179}}}}{{\text{2}}}\left[ {{\text{2(105)}}\,{\text{ + }}\,{\text{(179}}\,{\text{ - }}\,{\text{1)(5)}}} \right]$

$   = \,\dfrac{{179}}{2}\left[ {2(105)\, + \,(178)(5)} \right]$ 

$= 179\left[ {105\, + \,(89)5} \right] $

 $  = 179(105\, + \,445) $

   = 179(550) 

   = 98450  

Therefore, the sum of natural numbers lying between 100 and 1000, which are multiples of 5 are 98450.


3. In an A.P., the first term is 2 and the sum of the first five term is one fourth of the next five terms. Show that ${20^{{\text{th}}}}$ term is -112.

Ans: Given: a = 2

Let the common difference be d.

Thus, the A.P. is 2, 2+d, 2+2d, 2+3d, …

Sum of first five terms = 10 + 10d

Sum of next five terms = 10 + 35d

From the given condition,

$10+10d=\dfrac{1}{4}(10+35d)$

$   \Rightarrow {\text{40}}\,{\text{ + }}\,{\text{40d}}\,{\text{ =  10  + }}\,{\text{35d}} $

  $ \Rightarrow {\text{ 30  =   - 5d}} $

$   \Rightarrow {\text{ d  =   - 6}} $

$  \therefore {\text{ a20  =  a  +  (20  -  1)d  =  2  +  19( - 6)  =  2  -  114  =   - 112}}$

Therefore, ${20^{{\text{th}}}}$ term of the given A.P. is -112.


4. How many terms of the A.P. $ - 6,\,\dfrac{{ - 11}}{2},\, - 5,\,...$are needed to give the sum -25?

Ans: Let the sum of n terms of the A.P. be -25.

We know that,

${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$

Here, n = number of terms, a = first term, d = common difference.

Here, a = -6

d = $\dfrac{{ - 11}}{2} + 6\, = \,\dfrac{{ - 11 + 12}}{2}\, = \,\dfrac{1}{2}$

Thus, we get,

$ {\text{ - 25  =  }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2( - 6)  +  (n  -  1)}}\left( {\dfrac{1}{2}} \right)} \right] $

   $\Rightarrow {\text{  - 50  =  n}}\left[ { - 12\, + \,\dfrac{{\text{n}}}{{\text{2}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right] $

   $\Rightarrow \, - 50\, = \,{\text{n}}\left[ {\dfrac{{{\text{ - 25}}}}{{\text{2}}}{\text{ + }}\dfrac{{\text{n}}}{{\text{2}}}} \right]$

$   \Rightarrow \, - 100\, = \,{\text{n( - 25}}\,{\text{ + }}\,{\text{n)}} $

 $  \Rightarrow \,{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{25n}}\,{\text{ + }}\,{\text{100}}\,{\text{ = }}\,{\text{0}} $

   $\Rightarrow \,{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{5n}}\,{\text{ - }}\,{\text{20n}}\,{\text{ + 100}}\,{\text{ = }}\,{\text{0}} $

  $ \Rightarrow {\text{n(n}}\,{\text{ - }}\,{\text{5)}}\,{\text{ - 20(n}}\,{\text{ - }}\,{\text{5)}}\,{\text{ = }}\,{\text{0}} $

$   \Rightarrow {\text{n}}\,{\text{ = }}\,{\text{20}}\,{\text{or}}\,{\text{5}} $


5. In an A.P., if the ${{\text{p}}^{{\text{th}}}}$term is 1/q and ${{\text{q}}^{{\text{th}}}}$term is 1/p, prove that the sum of first pq terms is

$\dfrac{{\text{1}}}{{\text{2}}}\left( {{\text{pq}}\,{\text{ + }}\,{\text{1}}} \right)$, where ${\text{p}}\, \ne \,{\text{q}}$.

Ans: We know that, the general form of A.P. is ${\text{an}}\,{\text{ = }}\,{\text{a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}$

From the given data,

${{\text{p}}^{{\text{th}}}}{\text{ term  =  ap  =  a  +  (p  -  1)d  =  }}\dfrac{1}{{\text{q}}}\,\,......(1) $

  ${{\text{q}}^{{\text{th}}}}{\text{ term  =  aq  =  a  +  (q  -  1)d  =  }}\dfrac{{\text{1}}}{{\text{p}}}\,\,........(2) $

Subtracting (2) from (1), we get,

$ ({\text{p  -  1}}){\text{d  -  (q  -  1)d  =  }}\dfrac{{\text{1}}}{{\text{q}}}\,{\text{ - }}\,\dfrac{{\text{1}}}{{\text{p}}} $

 $  \Rightarrow \,{\text{(p  -  1  -  q  +  1)d  =  }}\dfrac{{{\text{p}}\,{\text{ - }}\,{\text{q}}}}{{{\text{pq}}}} $

  $ \Rightarrow {\text{ (p  -  q)d  =  }}\dfrac{{{\text{p}}\,{\text{ - }}\,{\text{q}}}}{{{\text{pq}}}} $

  $ \Rightarrow {\text{ d  =  }}\dfrac{{\text{1}}}{{{\text{pq}}}} $

Substituting the value of d in (1), we get,

${\text{a  +  (p  -  1)}}\dfrac{{\text{1}}}{{{\text{pq}}}}\,{\text{ = }}\,\dfrac{{\text{1}}}{{\text{q}}}$

$ \Rightarrow {\text{a  =  }}\dfrac{{\text{1}}}{{\text{q}}}\,{\text{ - }}\,\dfrac{{\text{1}}}{{\text{q}}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{{\text{pq}}}}\,{\text{ = }}\,\dfrac{{\text{1}}}{{{\text{pq}}}}$

$\therefore \,{\text{Spq  =  }}\dfrac{{{\text{pq}}}}{{\text{2}}}\left[ {{\text{2a  +  (pq  - 1)d}}} \right]$

  ${\text{ =  }}\dfrac{{{\text{pq}}}}{{\text{2}}}\left[ {\dfrac{{\text{2}}}{{{\text{pq}}}}\,{\text{ + }}\,{\text{(pq}}\,{\text{ - }}\,{\text{1)}}\dfrac{{\text{1}}}{{{\text{pq}}}}} \right] $

  ${\text{ = }}\,{\text{1}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{\text{2}}}{\text{(pq}}\,{\text{ - }}\,{\text{1)}} $

  ${\text{ = }}\,\dfrac{{\text{1}}}{{\text{2}}}{\text{pq}}\,{\text{ + }}\,{\text{1}}\,{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}\,{\text{ = }}\,\dfrac{{\text{1}}}{{\text{2}}}{\text{pq}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{\text{2}}} $

$  {\text{ = }}\,\dfrac{{\text{1}}}{{\text{2}}}{\text{(pq}}\,{\text{ + }}\,{\text{1)}} $

Therefore, sum of the first pq terms is $\dfrac{{\text{1}}}{{\text{2}}}{\text{(pq}}\,{\text{ + }}\,{\text{1)}}$.


6. If the sum of a certain number of terms in an A.P. 25, 22, 19, … is 116. Find the last term.

Ans: Let the sum of n terms of an A.P. be 116.

${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$

Here, a = 25 and d = 25 – 22 = -3

$  \therefore {\text{Sn  =  }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2 x 25}}\,{\text{ + }}\,{\text{(n - 1)( - 3)}}} \right]$

 $  \Rightarrow {\text{ 116  =  }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{50}}\,{\text{ - }}\,{\text{3n}}\,{\text{ + }}\,{\text{3}}} \right] $

  $ \Rightarrow \,{\text{232}}\,{\text{ = }}\,{\text{n(53}}\,{\text{ - }}\,{\text{3n)}}\,{\text{ = }}\,{\text{53n}}\,{\text{ - }}\,{\text{3}}{{\text{n}}^{\text{2}}} $

 $  \Rightarrow {\text{3}}{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{53n}}\,{\text{ + 232}}\,{\text{ = }}\,{\text{0}} $

  $ \Rightarrow {\text{3}}{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{24n}}\,{\text{ - }}\,{\text{29n}}\,{\text{ + 232}}\,{\text{ = }}\,{\text{0}} $

 $  \Rightarrow \,{\text{3n(n - 8)}}\,{\text{ - }}\,{\text{29(n - 8)}}\,{\text{ = }}\,{\text{0}} $

   $\Rightarrow \,{\text{(n - 8)(3n}}\,{\text{ - }}\,{\text{29)}}\,{\text{ = }}\,{\text{0}} $

   $\Rightarrow \,{\text{n}}\,{\text{ = }}\,{\text{8}}\,{\text{or}}\,{\text{n}}\,{\text{ = }}\dfrac{{{\text{29}}}}{{\text{3}}} $  

We know that, n cannot be equal to $\dfrac{{29}}{3}$, therefore n = 8.

$ \therefore {a_8}{\text{ = }}\,{\text{Last term  =  a  +  (n  -  1)d  =  25  +  (8  -  1)( - 3) }} $

${\text{ =   25  +  (7)( - 3)  =  25  -  21}} $

 $ {\text{ =  4}} $ 

Therefore, the last term of the given A.P. is 4.


7. Find the sum to n terms of an A.P., whose ${{\text{K}}^{{\text{th}}}}$term is 5k+1.

Ans: Given: ${{\text{K}}^{{\text{th}}}}$ term is 5k+1

$ {{\text{K}}^{{\text{th}}}}{\text{ term  =  a  +  (k  -  1)d}} $

  $\therefore {\text{ a  +  (k  -  1)d  =  5k  +  1}} $

  ${\text{a  +  kd  -  d  =  5k  +  1}} $ 

By comparing the coefficient of k, we get d = 5.

$\Rightarrow {\text{a  -  d  =  1}} $

   $\Rightarrow {\text{a  -  5  =  1}} $

   $\Rightarrow {\text{a  =  6}} $

 $ {\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right] $

 $ {\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2(6)}}\,{\text{ + }}\,{\text{(n - 1)(5)}}} \right] $

  ${\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{12}}\,{\text{ + }}\,{\text{5n}}\,{\text{ - }}\,{\text{5}}} \right] $

  ${\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{5n}}\,{\text{ + }}\,{\text{7}}} \right] $ 


8. If the sum of n terms of an A.P. is $({\text{pn  +  q}}{{\text{n}}^{\text{2}}})$, where p and q are constants. Find the common difference.

Ans: We know that, 

${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$

From the given data,

$\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a  +  (n  -  1)d}}} \right]{\text{ =  pn  +  q}}{{\text{n}}^{\text{2}}} $

   $\Rightarrow \dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a  +  nd  -  d}}} \right] = {\text{pn  +  q}}{{\text{n}}^{\text{2}}} $

  $ \Rightarrow {\text{na  +  }}{{\text{n}}^{\text{2}}}\dfrac{{\text{d}}}{{\text{2}}}\,{\text{ - }}\,{\text{n}}{\text{.}}\dfrac{{\text{d}}}{{\text{2}}}\,{\text{ = }}\,{\text{pn  +  q}}{{\text{n}}^{\text{2}}} $ 

 By comparing the coefficients of ${{\text{n}}^{\text{2}}}$ on both the sides,

$\dfrac{{\text{d}}}{{\text{2}}}\,{\text{ = }}\,{\text{q}} $

  $\therefore {\text{d  =  2q}} $ 

Therefore, common difference d = 2q.


9. The sums of n terms of the arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their ${18^{{\text{th}}}}$terms.

Ans: Let ${\text{a1,}}\,{\text{a2}}$ be the first terms and ${\text{d1,}}\,{\text{d2}}$ be the common differences of first and second arithmetic progression respectively.

From the given condition,

\[\Rightarrow \dfrac{\dfrac{\text{n}}{\text{2}}\left[ \text{2}{{\text{a}}_{\text{1}}}\text{+}\left( \text{n-1} \right){{\text{d}}_{\text{1}}} \right]}{\dfrac{\text{n}}{\text{2}}\left[ \text{2}{{\text{a}}_{\text{2}}}\text{+}\left( \text{n-1} \right){{\text{d}}_{\text{2}}} \right]}\text{=}\dfrac{\text{5n+4}}{\text{9n+6}}\] …..(1)

Substitute n = 35 in (1)

\[\Rightarrow \dfrac{\text{2}{{\text{a}}_{\text{1}}}\text{+34}{{\text{d}}_{\text{1}}}}{\text{2}{{\text{a}}_{\text{2}}}\text{+34}{{\text{d}}_{\text{2}}}}\text{=}\dfrac{\text{5}\left( \text{35} \right)\text{+4}}{\text{9}\left( \text{35} \right)\text{+6}}\]

\[\Rightarrow \dfrac{{{\text{a}}_{\text{1}}}\text{+17}{{\text{d}}_{\text{1}}}}{{{\text{a}}_{\text{2}}}\text{+17}{{\text{d}}_{\text{2}}}}\text{=}\dfrac{\text{179}}{\text{321}}\] …….(2)

\[\dfrac{\text{18th}\,\,\text{term}\,\,\text{of}\,\text{first}}{\text{18th term of second A}\text{.P}}\text{=}\]\[\dfrac{{{\text{a}}_{\text{1}}}\text{+17}{{\text{d}}_{\text{1}}}}{{{\text{a}}_{\text{2}}}\text{+17}{{\text{d}}_{\text{2}}}}\]……(3)

From (2) and (3) we get.

\[\dfrac{\text{18th}\,\,\text{term}\,\,\text{of}\,\text{first}}{\text{18th term of second A}\text{.P}}\text{=}\dfrac{179}{321}\]

Therefore ratio of both 18th terms of the A.P are 179:321


10. If the sum of first p terms of an A.P. is equal to the sum of first q terms, then find the sum of first (p+q) terms.

Ans: Let a, d be the first term and common difference of the given term respectively.

$ {\text{Sp}}\,{\text{ = }}\,\dfrac{{\text{p}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(p}}\,{\text{ - }}\,{\text{1)d}}} \right] $

$  {\text{Sq}}\,{\text{ = }}\,\dfrac{{\text{q}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(q}}\,{\text{ - }}\,{\text{1)d}}} \right] $ 

 From the given condition,

$\dfrac{{\text{p}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(p}}\,{\text{ - }}\,{\text{1)d}}} \right]\, = \,\dfrac{{\text{q}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(q}}\,{\text{ - }}\,{\text{1)d}}} \right] $

  $ \Rightarrow {\text{ p}}\left[ {{\text{2a  +  (p  -  1)d}}} \right] = {\text{q}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(q}}\,{\text{ - }}\,{\text{1)d}}} \right] $ 

$ \Rightarrow {\text{ 2ap  +  pd(p  -  1)  =  2aq  +  qd(q  -  1)}} $

   $\Rightarrow {\text{ 2a(p  -  q)  +  d}}\left[ {{\text{p(p  -  1)  -  q(q  -  1)}}} \right]\, = \,0 $

  $ \Rightarrow {\text{ 2a(p  -  q)  +  d}}\left[ {{{\text{p}}^{\text{2}}}{\text{  -  p  - }}{{\text{q}}^{\text{2}}}{\text{  +  q}}} \right]\, = \,0 $

  $ \Rightarrow {\text{ 2a(p  -  q)  +  d}}\left[ {{\text{(p  -  q)(p  +  q) - (p  -  q)}}} \right]\, = \,0 $

  $ \Rightarrow {\text{ 2a(p  -  q)  +  d}}\left[ {{\text{(p  -  q)(p  +  q  -  1)}}} \right]\, = \,0 $

  $ \Rightarrow {\text{ 2a  +  d(p  +  q  -  1)  =  0}} $

  $ \Rightarrow {\text{ d  =  }}\dfrac{{{\text{ - 2a}}}}{{{\text{p  +  q  - 1}}}}\,.....(1) $  

$  \therefore {\text{Sp + q}}\,{\text{ = }}\,\dfrac{{{\text{p + q}}}}{2}\left[ {{\text{2a  +  (p  +  q  -  1)}}{\text{.d}}} \right] $

  $ \Rightarrow {\text{ Sp + q}}\,{\text{ = }}\,\dfrac{{{\text{p + q}}}}{2}\left[ {{\text{2a  +  (p  +  q  -  1)}}{\text{.}}\left( {\dfrac{{{\text{ - 2a}}}}{{{\text{p  +  q  - 1}}}}} \right)} \right] $

  $ = \,\dfrac{{{\text{p  +  q}}}}{2}\left[ {{\text{2a  -  2a}}} \right] $

   $= \,0 $  

Therefore, the sum of first (p+q) terms is 0.


11. Sum of the first p, q and r terms of an A.P. are a, b and c respectively. Prove that 

$\dfrac{{\text{a}}}{{\text{p}}}{\text{(q}}\,{\text{ - }}\,{\text{r)}}\,{\text{ + }}\,\dfrac{{\text{b}}}{{\text{q}}}{\text{(r}}\,{\text{ - }}\,{\text{p)}}\,{\text{ + }}\,\dfrac{{\text{c}}}{{\text{r}}}{\text{(p}}\,{\text{ - }}\,{\text{q)}}\,{\text{ = }}\,{\text{0}}$

Ans: Let the first term and common difference be ${\text{a1}}\ ,{\text{and}}\,{\text{d}}$ respectively.

From the given data,

$ {\text{Sp}}\,{\text{ = }}\,\dfrac{{\text{p}}}{{\text{2}}}\left[ {{\text{2a1  +  (p  -  1)d}}} \right] = \,{\text{a}}\, $

   $\Rightarrow {\text{ 2a1  +  (p  -  1)d = }}\,\dfrac{{{\text{2a}}}}{{\text{p}}}\,.....{\text{(1)}} $

  ${\text{Sq}}\,{\text{ = }}\,\dfrac{{\text{q}}}{{\text{2}}}\left[ {{\text{2a1  +  (q  -  1)d}}} \right]{\text{ = }}\,{\text{b}}\, $

  $ \Rightarrow {\text{ 2a1  +  (q  -  1)d = }}\,\dfrac{{{\text{2b}}}}{{\text{q}}}\,.....{\text{(2)}} $

  ${\text{Sr}}\,{\text{ = }}\,\dfrac{{\text{r}}}{{\text{2}}}\left[ {{\text{2a1  +  (r  -  1)d}}} \right]{\text{ = }}\,{\text{c}}\, $

  $ \Rightarrow {\text{ 2a1  +  (r  -  1)d = }}\,\dfrac{{{\text{2c}}}}{{\text{r}}}\,.....{\text{(3)}} $  

Subtracting (2) from (1), we get,

${\text{(p  -  1)d  -  (q  -  1)d  =  }}\dfrac{{{\text{2a}}}}{{\text{p}}}\,{\text{ - }}\,\dfrac{{{\text{2b}}}}{{\text{q}}} $

 $  \Rightarrow \,{\text{d(p  -  1  -  q  +  1)  =  }}\dfrac{{{\text{2aq}}\,{\text{ - }}\,{\text{2bp}}}}{{{\text{pq}}}} $

  $ \Rightarrow \,{\text{d(p}}\,{\text{ - }}\,{\text{q)}}\,{\text{ = }}\,\dfrac{{{\text{2aq}}\,{\text{ - }}\,{\text{2bp}}}}{{{\text{pq}}}} $

   $\Rightarrow \,{\text{d}}\,{\text{ = }}\,\dfrac{{{\text{2(aq}}\,{\text{ - }}\,{\text{bp)}}}}{{{\text{pq(p}}\,{\text{ - }}\,{\text{q)}}}}\,....(4) $ 

Subtracting (3) from (2), we get,

$  {\text{(q  -  1)d  -  (r  -  1)d  =  }}\dfrac{{{\text{2b}}}}{{\text{q}}}\,{\text{ - }}\,\dfrac{{{\text{2c}}}}{{\text{r}}} $

  $ \Rightarrow \,{\text{d(q  -  1  -  r  +  1)  =  }}\dfrac{{{\text{2b}}}}{{\text{q}}}\,{\text{ - }}\,\dfrac{{{\text{2c}}}}{{\text{r}}} $

   $\Rightarrow {\text{d(q  -  r)  =  }}\dfrac{{{\text{2br - 2cq}}}}{{{\text{qr}}}} $

$   \Rightarrow {\text{d  =  }}\dfrac{{{\text{2(br - cq)}}}}{{{\text{qr(q  -  r)}}}}{\text{ }}.....{\text{(5)}} $  

Equating both values of d obtained from (4) and (5), we get,

$\dfrac{{{\text{aq  -  bp}}}}{{{\text{pq(p  -  q)}}}}\, = \,\dfrac{{{\text{br  -  qc}}}}{{{\text{qr(q  -  r)}}}} $

   $\Rightarrow {\text{ qr(q  -  r)(aq  -  bp)  =  pq(p  -  q)(br  -  qc)}} $

   $\Rightarrow \,{\text{r(aq  -  bp)(q  -  r)  =  p(br  -  qc)(p  -  q)}} $

 $  \Rightarrow {\text{ (aqr  -  bpr)(q  -  r)  =  (bpr  -  pqc)(p  -  q)}} $ 

Divide both sides by pqr, we get,

$ \left( {\dfrac{{\text{a}}}{{\text{p}}}{\text{ - }}\dfrac{{\text{b}}}{{\text{q}}}} \right){\text{(q}}\,{\text{ - }}\,{\text{r)}}\,{\text{ = }}\,\left( {\dfrac{{\text{b}}}{{\text{q}}}{\text{ - }}\dfrac{{\text{c}}}{{\text{r}}}} \right){\text{(p}}\,{\text{ - }}\,{\text{q)}} $

  $ \Rightarrow \,\dfrac{{\text{a}}}{{\text{p}}}{\text{(q}}\,{\text{ - }}\,{\text{r)}}\,{\text{ - }}\,\dfrac{{\text{b}}}{{\text{q}}}{\text{(q}}\,{\text{ - }}\,{\text{r}}\,{\text{ + }}\,{\text{p}}\,{\text{ - }}\,{\text{q)}}\,{\text{ + }}\,\dfrac{{\text{c}}}{{\text{r}}}{\text{(p}}\,{\text{ - }}\,{\text{q)}}\,{\text{ = }}\,{\text{0}} $

 $  \Rightarrow \dfrac{{\text{a}}}{{\text{p}}}{\text{(q}}\,{\text{ - }}\,{\text{r)}}\,{\text{ + }}\,\dfrac{{\text{b}}}{{\text{q}}}{\text{(r}}\,{\text{ - }}\,{\text{p)}}\,{\text{ + }}\,\dfrac{{\text{c}}}{{\text{r}}}{\text{(p}}\,{\text{ - }}\,{\text{q)}}\,{\text{ = }}\,{\text{0}} $ 

Hence, the result is proved.


12. The ratio of the sums of m and n terms of an A.P. is ${{\text{m}}^{\text{2}}}\,{\text{:}}\,{{\text{n}}^{\text{2}}}$. Show that the ratio of ${{\text{m}}^{{\text{th}}}}\,{\text{and}}\,{{\text{n}}^{{\text{th}}}}$term is (2m -1) : (2n - 1).

Ans: Let the first term and common difference be a and d respectively.

From the given condition,

$\dfrac{{{\text{Sum of m terms}}}}{{{\text{Sum of n terms}}}}\, = \,\dfrac{{{{\text{m}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}} $

 $ \dfrac{{\dfrac{{\text{m}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(m}}\,{\text{ - }}\,{\text{1)d}}} \right]}}{{\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]}}\,{\text{ = }}\,\dfrac{{{{\text{m}}^{\text{2}}}}}{{{{\text{n}}^{\text{2}}}}} $

  $ \Rightarrow \dfrac{{{\text{2a  +  (m  -  1)d}}}}{{{\text{2a  +  (n  -  1)d}}}} = \,\dfrac{{\text{m}}}{{\text{n}}}\,.....(1) $ 

Put m = 2m – 1 and n = 2n – 1, we get,

$\dfrac{{{\text{2a  +  (2m  - 2)d}}}}{{{\text{2a  +  (2n  -  2)d}}}} = \dfrac{{{\text{2m  -  1}}}}{{{\text{2n  -  1}}}} $

   $\Rightarrow \dfrac{{{\text{a  +  (m  -  1)d}}}}{{{\text{a}}\, + ({\text{n  -  1}}){\text{d}}}} = \dfrac{{{\text{2m  -  1}}}}{{{\text{2n  -  1}}}}\,.....(2) $

$ \dfrac{{{{\text{m}}^{{\text{th}}}}{\text{ terms of an A}}{\text{.P}}{\text{.}}}}{{{{\text{n}}^{{\text{th}}}}{\text{ terms of an A}}{\text{.P}}{\text{.}}}}\, = \,\dfrac{{{\text{a  +  (m  -  1)d}}}}{{{\text{a}}\, + ({\text{n  -  1}}){\text{d}}}}\,....(3) $ 

From (2) and (3), we get,

$\dfrac{{{{\text{m}}^{{\text{th}}}}{\text{ terms of an A}}{\text{.P}}{\text{.}}}}{{{{\text{n}}^{{\text{th}}}}{\text{ terms of an A}}{\text{.P}}{\text{.}}}}\, = \,\dfrac{{{\text{2m  -  1}}}}{{{\text{2n  -  1}}}}$

Therefore, the result is proved.


13. If the sum of n terms of an A.P. of ${\text{3}}{{\text{n}}^{\text{2}}}\,{\text{ + }}\,{\text{5n}}$and its mth term is 164. Find the value of m.

Ans: Let the first term and common difference be a and d respectively.

${\text{am  =  a  +  (m  -  1)d  =  164 }}.....{\text{(1)}}$

Sum of n terms: ${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$

Given,

$ \dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]\, = \,{\text{3}}{{\text{n}}^{\text{2}}}\,{\text{ + }}\,{\text{5n}} $

 $ \Rightarrow \,{\text{na  +  }}{{\text{n}}^{\text{2}}}{\text{.}}\dfrac{{\text{d}}}{{\text{2}}}\,{\text{ - }}\,\dfrac{{{\text{nd}}}}{{\text{2}}}\,{\text{ = }}\,{\text{3}}{{\text{n}}^{\text{2}}}\,{\text{ + }}\,{\text{5n}} $ 

By comparing the coefficient on both the sides, we get,

$ \dfrac{{\text{d}}}{2}\, = \,3 $

 $  \Rightarrow {\text{d}}\,{\text{ = }}\,{\text{6}} $ 

By comparing the coefficient of n on both the sides,

$  {\text{a}}\,{\text{ - }}\,\dfrac{{\text{d}}}{{\text{2}}}\,{\text{ = }}\,{\text{5}} $

$   \Rightarrow \,{\text{a}}\,{\text{ - }}\,{\text{3}}\,{\text{ = }}\,{\text{5}} $

$   \Rightarrow {\text{a}}\,{\text{ = }}\,{\text{8}} $ 

Therefore from (1), we get,

${\text{8  +  (m  -  1)6  =  164}} $

  $ \Rightarrow {\text{ (m  -  1)6  =  164  -  8  =  156}} $

$   \Rightarrow {\text{ m  -  1  =  26}} $

$   \Rightarrow {\text{ m  =  27}} $ 

Therefore, the value of m is 27.


14. Insert five numbers between 8 and 26 such that resulting sequence is an A.P.

Ans: Let A1, A2, A3, A4 and A5 be the 5 numbers between 8 and 26 such that 8, A1, A2, A3, A4, A5, 26 is an A.P.

Here, a = 8, b = 26, n = 7.

Thus, 

$ {\text{26  =  8  +  (7  -  1)d}} $

 $  \Rightarrow {\text{6d  =  26  -  8  =  18}} $

  $ \Rightarrow {\text{d  =  3}} $

$  {\text{A1  =  a  +  d  =  8  +  3  =  11}} $

 $ {\text{A2  =  a  +  2d  =  8  +  2(3)  =  14}} $

$  {\text{A3  =  a  +  3d  =  8  +  3(3)  =  17}} $

$  {\text{A4  =  a  +  4d  =  8  +  4(3)  =  20}} $

$  {\text{A5  =  8  +  5d  =  8  +  5(3)  =  23}} $ 

Therefore, the five numbers between 8 and 26 are 11, 14, 17, 20, 23.


15. If $\dfrac{{{{\text{a}}^{\text{n}}}\,{\text{ + }}\,{{\text{b}}^{\text{n}}}}}{{{{\text{a}}^{{\text{n - 1}}}}\,{\text{ + }}\,{{\text{b}}^{{\text{n - 1}}}}}}$is the A.M. between a and b then, find the value of n.

Ans: We know that, A.M. of a and b is $\dfrac{{{\text{a + b}}}}{{\text{2}}}$

From the given condition,

$\dfrac{{{\text{a + b}}}}{{\text{2}}}\, = \,\dfrac{{{{\text{a}}^{\text{n}}}\,{\text{ + }}\,{{\text{b}}^{\text{n}}}}}{{{{\text{a}}^{{\text{n - 1}}}}\,{\text{ + }}\,{{\text{b}}^{{\text{n - 1}}}}}} $

 $  \Rightarrow {\text{ (a  +  b)(}}{{\text{a}}^{{\text{n - 1}}}}\,{\text{ + }}\,{{\text{b}}^{{\text{n - 1}}}}{\text{)  =  2(}}{{\text{a}}^{\text{n}}}\,{\text{ + }}\,{{\text{b}}^{\text{n}}}{\text{)}} $

$ \Rightarrow {\text{ }}{{\text{a}}^{\text{n}}}{\text{  +  a}}{{\text{b}}^{{\text{n - 1}}}}{\text{  +  b}}{{\text{a}}^{{\text{n - 1}}}}{\text{  +  }}{{\text{b}}^{\text{n}}}{\text{  =  2}}{{\text{a}}^{\text{n}}}\,{\text{ + }}\,2{{\text{b}}^{\text{n}}} $

$ \Rightarrow {\text{ a}}{{\text{b}}^{{\text{n - 1}}}}{\text{  +  b}}{{\text{a}}^{{\text{n - 1}}}}\, = \,{{\text{a}}^{\text{n}}}\,{\text{ + }}\,{{\text{b}}^{\text{n}}} $

$\Rightarrow \,{\text{a}}{{\text{b}}^{{\text{n - 1}}}}\, - \,{{\text{b}}^{\text{n}}}\, = \,{{\text{a}}^{\text{n}}}\, - \,{\text{b}}{{\text{a}}^{{\text{n - 1}}}} $

$\Rightarrow \,{{\text{b}}^{{\text{n - 1}}}}{\text{(a}}\,{\text{ - }}\,{\text{b)}}\, = \,{{\text{a}}^{{\text{n - 1}}}}{\text{(a}}\,{\text{ - }}\,{\text{b)}} $

$\Rightarrow \,{{\text{b}}^{{\text{n - 1}}}}\, = \,{{\text{a}}^{{\text{n - 1}}}} $

$ \Rightarrow {\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right)^{{\text{n - 1}}}} = 1 = {\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right)^{\text{0}}} $

$   \Rightarrow \,{\text{n}}\,{\text{ - }}\,{\text{1}}\,{\text{ = }}\,{\text{0}} $

$   \Rightarrow \,{\text{n}}\,{\text{ = }}\,{\text{1}} $ 


16. Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.

Ans: Let A1, A2, …., Am be the m numbers between 1 and 31 such that 1, A1, A2, …., Am, 31 are in A.P.

Here, a = 1, b = 31, n = m + 2

$ \therefore {\text{31  =  1  +  (m  +  2  -  1)(d)}} $

$   \Rightarrow 30 = {\text{ (m  +  1)d}} $

$   \Rightarrow {\text{d  =  }}\dfrac{{30}}{{{\text{m  +  1}}}}\,......(1) $

$  {\text{A1  =  a  +  d}} $

$  {\text{A2  =  a  +  2d}} $

$  {\text{A3  =  a  +  3d}} $

$  \therefore {\text{A7  =  a  +  7d}} $

$  {\text{Am - 1  =  a  +  (m  -  1)d}} $  

From the given condition,

$\dfrac{{{\text{a  +  7d}}}}{{{\text{a  +  (m  -  1)d}}}} = \dfrac{5}{9} $

$   \Rightarrow \dfrac{{1 + 7\left( {\dfrac{{30}}{{{\text{m  +  1}}}}} \right)}}{{1 + ({\text{m  -  1}})\left( {\dfrac{{30}}{{{\text{m  +  1}}}}} \right)}} = \dfrac{5}{9} $

 

$\Rightarrow {\text{ }}\dfrac{{{\text{m  +  1  +  7(30)}}}}{{{\text{m  +  1  +  30(m  - 1)}}}} = \dfrac{5}{9} $

  $ \Rightarrow {\text{ }}\dfrac{{{\text{m  +  1  +  210}}}}{{{\text{m  +  1  +  30m  - 30}}}} = \dfrac{5}{9} $

$   \Rightarrow \,\dfrac{{{\text{m  +  211}}}}{{{\text{31m  - 29}}}} = \dfrac{5}{9} $

$   \Rightarrow {\text{ 9m  +  1899  =  155m  -  145}} $

$   \Rightarrow \,{\text{155m  -  9m  =  1899  +  145}} $

$   \Rightarrow {\text{ 146m  =  2044}} $

$   \Rightarrow {\text{ m  =  14}} $ 

Therefore, the value of m is 14.


17. A man starts repaying a loan as the first installment of Rs. 100. If he increases the installment by Rs. 5 every month, what amount will he pay in the 30th installment?

Ans: Given: First installment = Rs.100

Second installment = Rs. 105 and so on.

The amount paid by man forms an A.P.

The A.P. is 100, 105, 110, ….

Here, a = 100, d = 5

$A30\, = \,{\text{a  +  (30  -  1)d}} $

$  {\text{ =  100  +  (29)(5)}} $

$  {\text{ =  100  +  145}} $

$  {\text{ =  245}} $ 

Therefore, the amount to be paid on the 30th installment is Rs. 245.


18. The difference between any two consecutive interior angles of a polygon is 5o . If the smallest angle is 120o, find the number of sides of the polygon.

Ans: The polygon angles form an A.P. with common difference as 5o and first term a as 120o

We know that, sum of all angles of a polygon with n sides = 180(n - 2).

$\therefore {\text{Sn  =  18}}{{\text{0}}^ \circ }({\text{n - 2)}} $

 $  \Rightarrow {\text{ }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a  +  (n  -  1)d}}} \right]{\text{ = }}\,{\text{18}}{{\text{0}}^{\text{o}}}{\text{(n - 2)}} $

$   \Rightarrow \,\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{240}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)5}}} \right]\,{\text{ = }}\,{\text{180(n}}\,{\text{ - }}\,{\text{2)}} $ 

$\Rightarrow \,{\text{n}}\left[ {{\text{240}}\,{\text{ + }}\,{\text{(n}}\,{\text{ - }}\,{\text{1)5}}} \right]\,{\text{ = }}\,{\text{360(n}}\,{\text{ - }}\,{\text{2)}} $

$   \Rightarrow \,2{\text{40n}}\,{\text{ + }}\,{\text{5}}{{\text{n}}^{\text{2}}}\,{\text{ - 5n}}\,{\text{ = }}\,{\text{360n}}\,{\text{ - }}\,{\text{720}} $

 $  \Rightarrow {\text{5}}{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{125n}}\,{\text{ + 720}}\,{\text{ = }}\,{\text{0}} $

$   \Rightarrow {{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{25n}}\,{\text{ + }}\,{\text{144}}\,{\text{ = }}\,{\text{0}} $

  $ \Rightarrow \,{{\text{n}}^{\text{2}}}\,{\text{ - }}\,{\text{16n}}\,{\text{ - }}\,{\text{9n}}\,{\text{ + }}\,{\text{144}}\,{\text{ = }}\,{\text{0}} $

   $\Rightarrow {\text{n(n}}\,{\text{ - }}\,{\text{16)}}\,{\text{ - }}\,{\text{9(n}}\,{\text{ - }}\,{\text{16)}}\,{\text{ = }}\,{\text{0}} $

$   \Rightarrow ({\text{n}}\,{\text{ - }}\,{\text{9)(n}}\,{\text{ - }}\,{\text{16)}}\,{\text{ = }}\,{\text{0}} $

 $  \Rightarrow \,{\text{n}}\,{\text{ = }}\,{\text{9}}\,{\text{or}}\,{\text{16}} $ 


NCERT Solutions for Class 11 Maths Chapters

 

NCERT Solution Class 11 Maths of Chapter 9 Exercises

Chapter 9 - Sequences and Series Exercises in PDF Format

Exercise 9.1

14 Questions & Solutions

Exercise 9.2

8 Questions & Solutions

Exercise 9.3

32 Questions & Solutions

Exercise 9.4

10 Questions & Solutions

Miscellaneous Exercise

32 Questions & Solutions


All Important Topics and Formulae to Solve Exercise 9.2 — Class 11 NCERT Maths 

Exercise 9.2 is based on the series of Arithmetics Progressions (AP) and related formulae. To solve the second exercise of the chapter Sequences and Series of Class 11 NCERT Mathematics, you must remember the below given formulae.

If the AP series is a1, a2, a3, …. an, …., and the difference between the consecutive terms is d (constant), then 

  • The nth term of AP series an = a + (n – 1) d

  • The series can be written as a, a + d, a + 2d, a + 3d, …..

  • Total sum of n terms of AP, ${\text{Sn}}\,{\text{ = }}\,\dfrac{{\text{n}}}{{\text{2}}}\left[{{\text{2a}}\,{\text{+}}\,{\text{(n}}\,{\text{ - }}\,{\text{1)d}}} \right]$ or Sn = \[\frac{n}{2}\](a + l)Sn

where a = first digit of AP sequence, n = number of digits, l = last digit

Arithmetic Mean: Arithmetic mean is the average of two numbers. If the two numbers are x and y, then their arithmetic mean will be expressed as 

Arithmetic Mean = \[\frac{x + y}{2}\]

Arithmetic mean is calculated when we have given two numbers, and we have to make an AP series by inserting numbers between them.


NCERT Solutions for Class 11 Maths Chapter 9 Sequences and Series Exercise 9.2

Opting for the NCERT solutions for Ex 9.2 Class 11 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 9.2 Class 11 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.


Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 11 students who are thorough with all the concepts from the Subject Sequences and Series textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 11 Maths Chapter 9 Exercise 9.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.


Besides these NCERT solutions for Class 11 Maths Chapter 9 Exercise 9.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.


Do not delay any more. Download the NCERT solutions for Class 11 Maths Chapter 9 Exercise 9.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

FAQs on NCERT Solutions for Class 11 Maths Chapter 9: Sequences and Series - Exercise 9.2

1. What are the topics in the chapter of Sequences and Series for Class 11?

The chapter of Sequences and Series include topics such as arithmetic progression, geometric progression, harmonic progression, etc. Most of the concepts included in this chapter involve a set of formulae that helps students to solve the sums. The second exercise of this chapter covers the concepts and applications of Arithmetic progression and Arithmetic Mean.


Even though A.P. and A.M. are the easiest of all the progressions, often students find it difficult to understand the application of these concepts in numerical problems. The NCERT Solutions for Class 11 Maths Chapter 9 Sequences and Series (Ex 9.2) Exercise 9.2 will help them to identify the correct approach for solving these sums.

2. What is an A.P.?

A.P. stands for Arithmetic Progression. A series of numbers, in which every two consecutive numbers differ by the same difference is called an arithmetic progression. The difference between two consecutive numbers of the progression is called the common difference for that particular progression. 

 

An example of Arithmetic Progression is 12, 14, 16, 18, 20. This progression has 5 terms and a common difference of 2. Also, this is a finite arithmetic progression. Another example of Arithmetic Progression: 21, 24, 27, 30, 33,......- this is an infinite arithmetic progression, as the last term of this sequence is not given and it is denoted by dots.

3. What are the formulas to solve the NCERT sums of Class 11 Maths Chapter 9 Sequences and Series (Ex 9.2) Exercise 9.2?

The NCERT Solutions for Class 11 Maths Chapter 9 Sequences and Series (Ex 9.2) Exercise 9.2 on Vedantu will help you understand the concepts of Arithmetic Progression a bit more clearly. These solutions have been prepared by the subject matter experts at Vedantu. The sums of exercise 9.2 of class 11 Maths chapter Sequences and Series cover applications of the arithmetic progression concepts. All the sums are solved in a step by step manner so that students are well aware of the intermediate steps, which can fetch them marks. The formulae that are frequently used to solve the sums of class 11 Maths Chapter 9 Sequences and Series (Ex 9.2) Exercise 9.2 are given below.

 

nth term of an A.P : an = a1 + (n - 1)d

 

sum of n terms of an A.P series : Sn = n/2 [2a + (n - 1)d]

4. What does Sequence signify?

It is the arrangement of any item or a collection of numbers in a certain order as dictated by a rule or a specific closed formula. Complete step-by-step response: Sequence: A sequence is an ordered collection of numbers, whereas a series is the sum of a sequence's terms. For more elaborate explanations or help, visit the Vedantu website or refer to the solutions by visiting the page NCERT Solutions for Class 11 Maths Chapter 9. 

5. How does a Sequence differ from a Series?

A Sequence is a format of items in a certain order, whereas a Series is the sum of the sequence's constituents. The order of the items in a Sequence is set, while the order of the elements in a series is not. This is the basic difference between a Series and a Sequence in Mathematics. Further explanations can be looked upon on Vedantu. It offers NCERT Solutions for Class 11 Maths Chapter 9 free of cost. These solutions are developed by top Maths teachers in India and can help students score high marks in exams. To download these solutions at free of cost visit the Vedantu website or download the Vedantu app.

6. Why do we need Sequence and Series?

Sequences and Series, in their own ways, play a vital part in many facets of our life and in Mathematics. They assist us in making decisions by allowing us to forecast, assess, and monitor the outcome or occurrence of a situation. Hence, it is of utmost importance that Sequence and Series are learned well and the related problems are practised as well.

7. Why do we need Calculus?

Calculus is a discipline of Mathematics concerned with the study of continuous change. Calculus is sometimes known as infinitesimal Calculus or "infinitesimal Calculus." The study of continuous change of functions is what classical Calculus entails. Calculus is also quite tricky and hence proper attention must be given to the rules and applications of Calculus. The NCERT problems on Class 11 Maths Chapter 9 must be solved diligently. Vedantu’s NCERT Solutions for Class 11 Maths Chapter 9 give detailed explanations for the same.

8. Is Calculus important in life?

Calculus is very crucial in enhancing the design of not only buildings but also critical infrastructure such as bridges. Calculus (Integration) is used in Electrical Engineering to estimate the precise length of power line required to connect two substations that are miles apart. All of these, there are many other applications that make calculus extremely important for us and hence proper attention must be given to it, especially while establishing basics.