
Prove that the equation of circle in the$z$plane can be written in the form$\alpha z\overline z + \overline \beta z + \beta \overline z + c = 0$. Deduce the equation of the line.
A. $\overline \beta z + \beta \overline z + c = 0$
B. $\overline \beta z - \beta \overline z + c = 0$
C. $\overline \beta z + \beta \overline z - c = 0$
D. None of these
Answer
613.5k+ views
Hint: Consider the standard form of circle in coordinate geometry then use basic formulas of complex numbers to convert it into complex form.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

