
Find the value of x + y+ z if it is given that ${\text{ta}}{{\text{n}}^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $for$x > 0,{\text{ y > 0, z > 0, xy + yz + zx < 1 }}$.
$
({\text{a) 0}} \\
({\text{b) xyz}} \\
({\text{c) 3xyz}} \\
({\text{d) }}\sqrt {xyz} \\
$
Answer
602.4k+ views
Hint: In this question we have to find the value of x + y + z, make use of basic trigonometric identity of ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$ to simplify the left hand side of the given equation with respect to the right hand side. This concept will help in getting the right answer.
Complete step-by-step answer:
Given equation is
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $
Then we have to find out the value of $x + y + z$.
Now as we know that ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) + {\tan ^{ - 1}}z = \pi $
Now again apply the property
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x + y}}{{1 - xy}} + z}}{{1 - \dfrac{{x + y}}{{1 - xy}}z}}} \right) = \pi $
Now simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x + y + z - xyz}}{{1 - xy}}}}{{\dfrac{{1 - xy - xz - yz}}{{1 - xy}}}}} \right) = \pi $
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = \pi $
Now shift tan inverse to R.H.S
$ \Rightarrow \left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = \tan \pi $………………… (1)
This condition only holds when the denominator of L.H.S is not zero.
Therefore the denominator of L.H.S should be less than zero or greater than zero.
But it is given that $xy + xz + yz < 1$………………. (2)
Therefore the denominator of L.H.S is not zero according to equation (2)
So, equation (1) holds.
Now as we know that the value of $\tan \pi $ is zero. So, substitute this value in above equation we have,
$ \Rightarrow \left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = 0$
$ \Rightarrow x + y + z - xyz = 0$
$ \Rightarrow x + y + z = xyz$
So, xyz is the required answer of $x + y + z$.
Hence, option (b) is correct.
Note: Whenever we face such types of problems the key point is simply to have a good grasp of the inverse trigonometric identities some of them are mentioned above. The application of these identities will help you get on the right track to reach the solution.
Complete step-by-step answer:
Given equation is
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $
Then we have to find out the value of $x + y + z$.
Now as we know that ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) + {\tan ^{ - 1}}z = \pi $
Now again apply the property
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x + y}}{{1 - xy}} + z}}{{1 - \dfrac{{x + y}}{{1 - xy}}z}}} \right) = \pi $
Now simplify the above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x + y + z - xyz}}{{1 - xy}}}}{{\dfrac{{1 - xy - xz - yz}}{{1 - xy}}}}} \right) = \pi $
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = \pi $
Now shift tan inverse to R.H.S
$ \Rightarrow \left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = \tan \pi $………………… (1)
This condition only holds when the denominator of L.H.S is not zero.
Therefore the denominator of L.H.S should be less than zero or greater than zero.
But it is given that $xy + xz + yz < 1$………………. (2)
Therefore the denominator of L.H.S is not zero according to equation (2)
So, equation (1) holds.
Now as we know that the value of $\tan \pi $ is zero. So, substitute this value in above equation we have,
$ \Rightarrow \left( {\dfrac{{x + y + z - xyz}}{{1 - xy - xz - yz}}} \right) = 0$
$ \Rightarrow x + y + z - xyz = 0$
$ \Rightarrow x + y + z = xyz$
So, xyz is the required answer of $x + y + z$.
Hence, option (b) is correct.
Note: Whenever we face such types of problems the key point is simply to have a good grasp of the inverse trigonometric identities some of them are mentioned above. The application of these identities will help you get on the right track to reach the solution.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

