
Find the set E of the value of X for which the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]is valid.
Answer
604.5k+ views
Hint: Similar to the binomial expansion of \[{{\left( 1+x \right)}^{n}}\], by using the binomial theorem; remove the constant from expression and it should be less than 1.
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}\end{align}\]
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

