
Find the set E of the value of X for which the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]is valid.
Answer
613.2k+ views
Hint: Similar to the binomial expansion of \[{{\left( 1+x \right)}^{n}}\], by using the binomial theorem; remove the constant from expression and it should be less than 1.
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}\end{align}\]
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

