
Consider the expression\[\int{{{\sec }^{n}}x\tan xdx}\]. Find the value of the integral.
Answer
621.6k+ views
Hint: You can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], in the given integral. Later, you can employ the substitution method to compute the given integral, by substituting\[\sec x=t\].
We must evaluate the integral of \[\int{{{\sec }^{n}}x\tan xdx}\].
Let us assume the given integral as \[\int{{{\sec }^{n}}x\tan xdx}=I\].
We can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], since we know \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, the integer can be expressed as,
\[I=\int{{{\sec }^{n-1}}x.\sec x.tanxdx}\].
Let us use the substitution process for evaluating this particular form of integral.
So, let us put \[\sec x\]as ‘t’.
\[\sec x=t\].
Differentiating on both the sides of the above equation, we have:
\[\dfrac{d\left( \sec x \right)}{dx}=\dfrac{dt}{dx}\]
\[\sec x.\tan x=\dfrac{dt}{dx}\]
Therefore, \[dt=\sec x.\tan x.dx\]
As we substitute the value of ‘t’ and \[dt\]in the integrals I, the integral will transform as mentioned below:
\[I=\int{{{\left( t \right)}^{n-1}}dt}\]
Evaluating the integral further, we have:
\[I=\dfrac{{{t}^{\left( n-1 \right)+1}}}{\left( n-1 \right)+1}+c\].
Since, for any given x,\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c}\]
Therefore, the integral reduces to:
\[I=\dfrac{{{t}^{n}}}{n}+c\]
As, we have \[t=\sec x\], let us put it back in the solved expression of the integral.
Then, we have:
\[I=\dfrac{{{\sec }^{n}}x}{n}+c\]
Where, c is any constant.
So, by following the process of substitution we have evaluated the given integral.
Hence the answer for the given integral is \[\dfrac{{{\sec }^{n}}x}{n}+c.\]
Note: We can directly evaluate the given integral by using the formula \[\int{{{\left( f\left( x \right) \right)}^{n}}{f}'\left( x \right)dx=\dfrac{f{{\left( x \right)}^{n+1}}}{n+1}+c}\] where \[f\left( x \right)={{\sec }^{n-1}}\]and \[{f}'\left( x \right)=\sec x\tan x\] respectively. Using shortcut methods effectively will save time and give a smart approach to the answer. Also, applying product rule is not recommended in this case as the process will be very lengthy and difficult to solve.
We must evaluate the integral of \[\int{{{\sec }^{n}}x\tan xdx}\].
Let us assume the given integral as \[\int{{{\sec }^{n}}x\tan xdx}=I\].
We can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], since we know \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, the integer can be expressed as,
\[I=\int{{{\sec }^{n-1}}x.\sec x.tanxdx}\].
Let us use the substitution process for evaluating this particular form of integral.
So, let us put \[\sec x\]as ‘t’.
\[\sec x=t\].
Differentiating on both the sides of the above equation, we have:
\[\dfrac{d\left( \sec x \right)}{dx}=\dfrac{dt}{dx}\]
\[\sec x.\tan x=\dfrac{dt}{dx}\]
Therefore, \[dt=\sec x.\tan x.dx\]
As we substitute the value of ‘t’ and \[dt\]in the integrals I, the integral will transform as mentioned below:
\[I=\int{{{\left( t \right)}^{n-1}}dt}\]
Evaluating the integral further, we have:
\[I=\dfrac{{{t}^{\left( n-1 \right)+1}}}{\left( n-1 \right)+1}+c\].
Since, for any given x,\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c}\]
Therefore, the integral reduces to:
\[I=\dfrac{{{t}^{n}}}{n}+c\]
As, we have \[t=\sec x\], let us put it back in the solved expression of the integral.
Then, we have:
\[I=\dfrac{{{\sec }^{n}}x}{n}+c\]
Where, c is any constant.
So, by following the process of substitution we have evaluated the given integral.
Hence the answer for the given integral is \[\dfrac{{{\sec }^{n}}x}{n}+c.\]
Note: We can directly evaluate the given integral by using the formula \[\int{{{\left( f\left( x \right) \right)}^{n}}{f}'\left( x \right)dx=\dfrac{f{{\left( x \right)}^{n+1}}}{n+1}+c}\] where \[f\left( x \right)={{\sec }^{n-1}}\]and \[{f}'\left( x \right)=\sec x\tan x\] respectively. Using shortcut methods effectively will save time and give a smart approach to the answer. Also, applying product rule is not recommended in this case as the process will be very lengthy and difficult to solve.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

