
Consider the expression\[\int{{{\sec }^{n}}x\tan xdx}\]. Find the value of the integral.
Answer
603.3k+ views
Hint: You can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], in the given integral. Later, you can employ the substitution method to compute the given integral, by substituting\[\sec x=t\].
We must evaluate the integral of \[\int{{{\sec }^{n}}x\tan xdx}\].
Let us assume the given integral as \[\int{{{\sec }^{n}}x\tan xdx}=I\].
We can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], since we know \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, the integer can be expressed as,
\[I=\int{{{\sec }^{n-1}}x.\sec x.tanxdx}\].
Let us use the substitution process for evaluating this particular form of integral.
So, let us put \[\sec x\]as ‘t’.
\[\sec x=t\].
Differentiating on both the sides of the above equation, we have:
\[\dfrac{d\left( \sec x \right)}{dx}=\dfrac{dt}{dx}\]
\[\sec x.\tan x=\dfrac{dt}{dx}\]
Therefore, \[dt=\sec x.\tan x.dx\]
As we substitute the value of ‘t’ and \[dt\]in the integrals I, the integral will transform as mentioned below:
\[I=\int{{{\left( t \right)}^{n-1}}dt}\]
Evaluating the integral further, we have:
\[I=\dfrac{{{t}^{\left( n-1 \right)+1}}}{\left( n-1 \right)+1}+c\].
Since, for any given x,\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c}\]
Therefore, the integral reduces to:
\[I=\dfrac{{{t}^{n}}}{n}+c\]
As, we have \[t=\sec x\], let us put it back in the solved expression of the integral.
Then, we have:
\[I=\dfrac{{{\sec }^{n}}x}{n}+c\]
Where, c is any constant.
So, by following the process of substitution we have evaluated the given integral.
Hence the answer for the given integral is \[\dfrac{{{\sec }^{n}}x}{n}+c.\]
Note: We can directly evaluate the given integral by using the formula \[\int{{{\left( f\left( x \right) \right)}^{n}}{f}'\left( x \right)dx=\dfrac{f{{\left( x \right)}^{n+1}}}{n+1}+c}\] where \[f\left( x \right)={{\sec }^{n-1}}\]and \[{f}'\left( x \right)=\sec x\tan x\] respectively. Using shortcut methods effectively will save time and give a smart approach to the answer. Also, applying product rule is not recommended in this case as the process will be very lengthy and difficult to solve.
We must evaluate the integral of \[\int{{{\sec }^{n}}x\tan xdx}\].
Let us assume the given integral as \[\int{{{\sec }^{n}}x\tan xdx}=I\].
We can rewrite \[{{\sec }^{n}}x\]as \[{{\sec }^{n-1}}x.\sec x\], since we know \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, the integer can be expressed as,
\[I=\int{{{\sec }^{n-1}}x.\sec x.tanxdx}\].
Let us use the substitution process for evaluating this particular form of integral.
So, let us put \[\sec x\]as ‘t’.
\[\sec x=t\].
Differentiating on both the sides of the above equation, we have:
\[\dfrac{d\left( \sec x \right)}{dx}=\dfrac{dt}{dx}\]
\[\sec x.\tan x=\dfrac{dt}{dx}\]
Therefore, \[dt=\sec x.\tan x.dx\]
As we substitute the value of ‘t’ and \[dt\]in the integrals I, the integral will transform as mentioned below:
\[I=\int{{{\left( t \right)}^{n-1}}dt}\]
Evaluating the integral further, we have:
\[I=\dfrac{{{t}^{\left( n-1 \right)+1}}}{\left( n-1 \right)+1}+c\].
Since, for any given x,\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c}\]
Therefore, the integral reduces to:
\[I=\dfrac{{{t}^{n}}}{n}+c\]
As, we have \[t=\sec x\], let us put it back in the solved expression of the integral.
Then, we have:
\[I=\dfrac{{{\sec }^{n}}x}{n}+c\]
Where, c is any constant.
So, by following the process of substitution we have evaluated the given integral.
Hence the answer for the given integral is \[\dfrac{{{\sec }^{n}}x}{n}+c.\]
Note: We can directly evaluate the given integral by using the formula \[\int{{{\left( f\left( x \right) \right)}^{n}}{f}'\left( x \right)dx=\dfrac{f{{\left( x \right)}^{n+1}}}{n+1}+c}\] where \[f\left( x \right)={{\sec }^{n-1}}\]and \[{f}'\left( x \right)=\sec x\tan x\] respectively. Using shortcut methods effectively will save time and give a smart approach to the answer. Also, applying product rule is not recommended in this case as the process will be very lengthy and difficult to solve.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

