Answer

Verified

483.3k+ views

Hint: Find the number of times we see heads and tails on the coin in \[4\] tosses by forming a linear equation relating the number of tosses to the money earned after \[4\] tosses. Find the value of probability \[p\] by using the formula for calculating probability of independent events.

We have a fair coin which is tossed \[4\] times and a person wins \[\operatorname{Re}1\] for each head and loses \[Rs.1.5\] for each tail. We have to find the probability \[p\] of a person losing \[Rs.3.5\] after \[4\] tosses.

We will begin by calculating the number of heads and tails that occur in a series of \[4\] tosses such that a person loses \[Rs.3.5\] after \[4\] tosses.

Let’s assume that the number of times that a coin shows heads is \[x\]. As the total number of tosses is \[4\], the number of times a coin shows tails is \[4-x\]. Thus, the amount of money a person gains by getting \[x\] heads is \[Rs.x\times 1=Rs.x\]and the amount of money a person loses by getting \[4-x\] tails is \[Rs.\left( 4-x \right)\times 1.5=Rs.\left( 6-1.5x \right)\]. As the total loss after \[4\] tosses is \[Rs.3.5\], we have \[6-1.5x-x=3.5\]. Further simplifying the equation, we get \[2.5=2.5x\Rightarrow x=1\]. Thus, the number of heads is \[x=1\] and the number of tails is \[4-x=3\].

We will now find the probability of getting \[1\] heads and \[3\] tails in four tosses.

We know that probability of any event is the ratio of the number of favourable outcomes to the total number of possible outcomes.

Each time we toss a coin, the probability of getting heads or tails is \[=\dfrac{1}{2}\]. Also, the occurrence of heads or tails in each toss is independent of occurrence of heads or tails in other tosses.

We know that if two events \[A\] and \[B\] are independent, then we have \[P\left( A\cap B \right)=P\left( A \right)\times P\left( B \right)\].

As probability of getting one heads \[=\dfrac{1}{2}\] and probability of getting each tails \[=\dfrac{1}{2}\]and the events are independent, we have, the probability of getting \[1\] heads and \[3\] tails in four tosses \[=4\times \] probability of getting \[1\] heads \[\times \] probability of getting \[3\] tails \[=p\].

Thus, we have \[p=4\times \left( \dfrac{1}{2} \right)\times {{\left( \dfrac{1}{2} \right)}^{3}}=4\times {{\left( \dfrac{1}{2} \right)}^{4}}=\dfrac{1}{4}\].

Hence, the value of \[4p\] is \[4p=\dfrac{4}{4}=1\].

Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. We must remember that the sum of probability of occurrence of some event and probability of non-occurrence of the same event is always \[1\].

We have a fair coin which is tossed \[4\] times and a person wins \[\operatorname{Re}1\] for each head and loses \[Rs.1.5\] for each tail. We have to find the probability \[p\] of a person losing \[Rs.3.5\] after \[4\] tosses.

We will begin by calculating the number of heads and tails that occur in a series of \[4\] tosses such that a person loses \[Rs.3.5\] after \[4\] tosses.

Let’s assume that the number of times that a coin shows heads is \[x\]. As the total number of tosses is \[4\], the number of times a coin shows tails is \[4-x\]. Thus, the amount of money a person gains by getting \[x\] heads is \[Rs.x\times 1=Rs.x\]and the amount of money a person loses by getting \[4-x\] tails is \[Rs.\left( 4-x \right)\times 1.5=Rs.\left( 6-1.5x \right)\]. As the total loss after \[4\] tosses is \[Rs.3.5\], we have \[6-1.5x-x=3.5\]. Further simplifying the equation, we get \[2.5=2.5x\Rightarrow x=1\]. Thus, the number of heads is \[x=1\] and the number of tails is \[4-x=3\].

We will now find the probability of getting \[1\] heads and \[3\] tails in four tosses.

We know that probability of any event is the ratio of the number of favourable outcomes to the total number of possible outcomes.

Each time we toss a coin, the probability of getting heads or tails is \[=\dfrac{1}{2}\]. Also, the occurrence of heads or tails in each toss is independent of occurrence of heads or tails in other tosses.

We know that if two events \[A\] and \[B\] are independent, then we have \[P\left( A\cap B \right)=P\left( A \right)\times P\left( B \right)\].

As probability of getting one heads \[=\dfrac{1}{2}\] and probability of getting each tails \[=\dfrac{1}{2}\]and the events are independent, we have, the probability of getting \[1\] heads and \[3\] tails in four tosses \[=4\times \] probability of getting \[1\] heads \[\times \] probability of getting \[3\] tails \[=p\].

Thus, we have \[p=4\times \left( \dfrac{1}{2} \right)\times {{\left( \dfrac{1}{2} \right)}^{3}}=4\times {{\left( \dfrac{1}{2} \right)}^{4}}=\dfrac{1}{4}\].

Hence, the value of \[4p\] is \[4p=\dfrac{4}{4}=1\].

Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. We must remember that the sum of probability of occurrence of some event and probability of non-occurrence of the same event is always \[1\].

Recently Updated Pages

The aqueous solution of aluminium chloride is acidic due to

In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of

When NaCl is dissolved in water the sodium ion becomes

Give the summary of the story the enchanted pool class 10 english ICSE

What is the message of the poem Nine Gold Medals class 10 english ICSE

Which body formulates the foreign policy of India class 10 social science ICSE

Trending doubts

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

10 examples of friction in our daily life

Can anyone list 10 advantages and disadvantages of friction

State the laws of reflection of light

How do you know if an equation is linear or nonlin class 10 maths CBSE