Answer

Verified

451.5k+ views

Hint: The probability of finding a student with a particular age depends on the frequency of students with the particular age. The number of total outcomes would be 15 (since, there are 15 students). Mean is given as \[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\], where $p({{X}_{i}})$ is the probability for occurrence of the event ${{X}_{i}}$. To calculate the variance, we define, E(X) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]. Thus, variance is $E({{X}^{2}})-{{(E(X))}^{2}}$. While, standard deviation is the square root of variance.

Complete step-by-step answer:

Now, first we start with finding the probability distribution of random variable X.

Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$

Now, we can calculate probability for each event (namely the age of the students)-

P(X=14) = $\dfrac{2}{15}$, P(X=15) = $\dfrac{1}{15}$, P(X=16) = $\dfrac{2}{15}$, P(X=17) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=18) = $\dfrac{1}{15}$, P(X=19) = $\dfrac{2}{15}$, P(X=20) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=21) = $\dfrac{1}{15}$

This is the required probability distribution of the random variable X.

(These probabilities are calculated since we know that the total number of outcomes is 15 and the desired number of outcomes can be seen by the frequency of respective ages.)

Now, to find the mean,

\[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]

\[\sum\limits_{i=1}^{15}{{{X}_{i}}}p({{X}_{i}})\]

=$14\times \dfrac{2}{15}+15\times \dfrac{1}{15}+16\times \dfrac{2}{15}+17\times \dfrac{3}{15}+18\times \dfrac{1}{15}+19\times \dfrac{2}{15}+20\times \dfrac{3}{15}+21\times \dfrac{1}{15}$

=$\dfrac{1}{15}$(28+15+32+51+18+38+60+21)

=$\dfrac{263}{15}$

= 17.53 (approximately)

To find the variance,

We calculate $E({{X}^{2}})$

E(${{X}^{2}}$) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}^{2}}p({{X}_{i}})\]

E(${{X}^{2}}$) =\[{{14}^{2}}\times \dfrac{2}{15}+{{15}^{2}}\times \dfrac{1}{15}+{{16}^{2}}\times \dfrac{2}{15}+{{17}^{2}}\times \dfrac{3}{15}+{{18}^{2}}\times \dfrac{1}{15}+{{19}^{2}}\times \dfrac{2}{15}+{{20}^{2}}\times \dfrac{3}{15}+{{21}^{2}}\times \dfrac{1}{15}\]

E(${{X}^{2}}$) = $\dfrac{4683}{15}$

= 312.2

Now, the variance = $E({{X}^{2}})-{{(E(X))}^{2}}$

Variance = (312.2) -${{17.53}^{2}}$

(Since, mean = E(X) = 17.53)

Variance = 4.78 (approximately)

Now, standard deviation = \[\sqrt{\text{Variance}}\]=$\sqrt{4.78}$=2.186

Note: To calculate the probability of the event in case of discrete number of distribution, we simply calculate the desired frequency of the event and then divide it by the total number of outcomes. Variance can also be calculated by the formula $\dfrac{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}}{n}$. Here, n is the number of total outcomes and $\bar{X}$is the mean.

Complete step-by-step answer:

Now, first we start with finding the probability distribution of random variable X.

Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$

Now, we can calculate probability for each event (namely the age of the students)-

P(X=14) = $\dfrac{2}{15}$, P(X=15) = $\dfrac{1}{15}$, P(X=16) = $\dfrac{2}{15}$, P(X=17) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=18) = $\dfrac{1}{15}$, P(X=19) = $\dfrac{2}{15}$, P(X=20) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=21) = $\dfrac{1}{15}$

This is the required probability distribution of the random variable X.

(These probabilities are calculated since we know that the total number of outcomes is 15 and the desired number of outcomes can be seen by the frequency of respective ages.)

Now, to find the mean,

\[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]

\[\sum\limits_{i=1}^{15}{{{X}_{i}}}p({{X}_{i}})\]

=$14\times \dfrac{2}{15}+15\times \dfrac{1}{15}+16\times \dfrac{2}{15}+17\times \dfrac{3}{15}+18\times \dfrac{1}{15}+19\times \dfrac{2}{15}+20\times \dfrac{3}{15}+21\times \dfrac{1}{15}$

=$\dfrac{1}{15}$(28+15+32+51+18+38+60+21)

=$\dfrac{263}{15}$

= 17.53 (approximately)

To find the variance,

We calculate $E({{X}^{2}})$

E(${{X}^{2}}$) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}^{2}}p({{X}_{i}})\]

E(${{X}^{2}}$) =\[{{14}^{2}}\times \dfrac{2}{15}+{{15}^{2}}\times \dfrac{1}{15}+{{16}^{2}}\times \dfrac{2}{15}+{{17}^{2}}\times \dfrac{3}{15}+{{18}^{2}}\times \dfrac{1}{15}+{{19}^{2}}\times \dfrac{2}{15}+{{20}^{2}}\times \dfrac{3}{15}+{{21}^{2}}\times \dfrac{1}{15}\]

E(${{X}^{2}}$) = $\dfrac{4683}{15}$

= 312.2

Now, the variance = $E({{X}^{2}})-{{(E(X))}^{2}}$

Variance = (312.2) -${{17.53}^{2}}$

(Since, mean = E(X) = 17.53)

Variance = 4.78 (approximately)

Now, standard deviation = \[\sqrt{\text{Variance}}\]=$\sqrt{4.78}$=2.186

Note: To calculate the probability of the event in case of discrete number of distribution, we simply calculate the desired frequency of the event and then divide it by the total number of outcomes. Variance can also be calculated by the formula $\dfrac{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}}{n}$. Here, n is the number of total outcomes and $\bar{X}$is the mean.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

One cusec is equal to how many liters class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What organs are located on the left side of your body class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

How will you compare the emfs of two cells using a class 11 physics CBSE

What is the type of food and mode of feeding of the class 11 biology CBSE

10 examples of friction in our daily life