Answer

Verified

447.9k+ views

Hint: At first count the total number of favourable outcomes which is 2 and use it as n(E). Then count the event that can occur possibly in sample space which is 52. Then use the formula $P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)}.$

Complete step-by-step answer:

In the question we are given a pack of 52 cards and we have to find the probability of getting a queen of club or a king of heart.

At first we will define what probability is and understand the basic terms related to the probability to be used in the question.

The probability of an event is a measure of the likelihood that the event would occur.

If an experiment’s outcomes are equally likely to occur, then the probability of an event E is the number of outcomes in E divided by the total number of outcomes in the sample space.

Here sample space consists of all the events that can occur possibly.

So, it can be written as, $P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)}$

Here, P(E) is the probability of an event or events which is asked, n(E) is the number of favourable events and n(S) is the number of all the events that can occur possibly.

Now we have to know about the cards too about which question is asked.

In a pack of 52 cards there are four suits available such as Spade, Heart, Club, and Diamond. All have 13 cards each. Each suit has 1 King, 1 Queen, 1 Jack, 1 Ace and 9 cards number 2-10.

So here we are asked to find the probability of getting a queen of a club or a king of heart.

So the sample space consists of all the 52 cards in the pack.

So, n(s) = 52.

Now for the number of favourable events a queen of club or king of heart is only 2.

So n(E)=2

So the probability is,

$\begin{align}

& P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)} \\

& P\left( E \right)=\dfrac{2}{52}=\dfrac{1}{26} \\

\end{align}$

Hence the probability is $\dfrac{1}{26}$ .

Therefore, the correct answer is option (b).

Note: There is another way of doing this problem which is first getting the probability of getting the queen of club and queen of heart separately which are $\dfrac{1}{52}$ and $\dfrac{1}{52}$ respectively.

Now adding the probability of two events $\dfrac{1}{52}+\dfrac{1}{52}=\dfrac{1}{26}$

Hence we got the answer.

Complete step-by-step answer:

In the question we are given a pack of 52 cards and we have to find the probability of getting a queen of club or a king of heart.

At first we will define what probability is and understand the basic terms related to the probability to be used in the question.

The probability of an event is a measure of the likelihood that the event would occur.

If an experiment’s outcomes are equally likely to occur, then the probability of an event E is the number of outcomes in E divided by the total number of outcomes in the sample space.

Here sample space consists of all the events that can occur possibly.

So, it can be written as, $P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)}$

Here, P(E) is the probability of an event or events which is asked, n(E) is the number of favourable events and n(S) is the number of all the events that can occur possibly.

Now we have to know about the cards too about which question is asked.

In a pack of 52 cards there are four suits available such as Spade, Heart, Club, and Diamond. All have 13 cards each. Each suit has 1 King, 1 Queen, 1 Jack, 1 Ace and 9 cards number 2-10.

So here we are asked to find the probability of getting a queen of a club or a king of heart.

So the sample space consists of all the 52 cards in the pack.

So, n(s) = 52.

Now for the number of favourable events a queen of club or king of heart is only 2.

So n(E)=2

So the probability is,

$\begin{align}

& P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)} \\

& P\left( E \right)=\dfrac{2}{52}=\dfrac{1}{26} \\

\end{align}$

Hence the probability is $\dfrac{1}{26}$ .

Therefore, the correct answer is option (b).

Note: There is another way of doing this problem which is first getting the probability of getting the queen of club and queen of heart separately which are $\dfrac{1}{52}$ and $\dfrac{1}{52}$ respectively.

Now adding the probability of two events $\dfrac{1}{52}+\dfrac{1}{52}=\dfrac{1}{26}$

Hence we got the answer.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

How many crores make 10 million class 7 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the type of food and mode of feeding of the class 11 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Check whether the given numbers are divisible by 11 class 6 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

10 examples of law on inertia in our daily life