Courses for Kids
Free study material
Offline Centres
Store Icon

Fluid Mechanics

Last updated date: 09th Apr 2024
Total views: 349.8k
Views today: 10.49k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

The term that is fluid mechanics is in the branch of physics which is concerned with the mechanics of fluids that are the liquids, and the gases, and plasmas as well and the forces on them. It has applications as well in a range which is wide of disciplines, which are including mechanical, and civil, as well as the chemical and biomedical engineering.

We will learn more about the topic that is fluid mechanics in further this article.

[Image will be Uploaded Soon]

What is Fluid Mechanics

The fluid mechanics which is the science that is concerned with the response of fluids to forces exerted upon them. It is said to be a branch which is of classical physics with applications as well of great importance in hydraulic and aeronautical engineering, along with the chemical engineering, and meteorology, and zoology too.

The fluids that are the most familiar is of course water and an encyclopaedia that is said to be of the 19th century which is probably have dealt with the subject under the separate headings of hydrostatics that is the science of water at rest,and hydrodynamics also. The science that is said to be of water that too in motion. The scientist Archimedes founded hydrostatics in about 250 BC which is when according to legend he leapt out of his bath and ran naked through the streets of Syracuse crying “Eureka!” isn't it funny that it has undergone rather little development since. The foundations of theorem of hydrodynamics that is on the other hand we can say were not laid until the 18th century when mathematicians such as Leonhard Euler and Daniel Bernoulli as well began to explore the consequences that is for a virtually continuous medium like water that is of the principle that is dynamic that Newton had enunciated for systems composed of discrete particles. Their work was said to be continued in the 19th century by several  physicists and mathematicians of the first rank notably G.G. Stokes and William Thomson.

By the end of the century the explanations which had been found for a host of intriguing phenomena that is said to be having the flow of water through tubes and orifices the waves that ships moving through level which is behind them that is the raindrops on window panes and the like. There was still no understanding or we can say proper understanding however that is of problems as fundamental as that of water which is flowing past a fixed obstacle and exerting a force which is drag upon it that is the theory of flow of the potential which generally worked so well in other contexts that resulted yielded that at relatively high flow rates were grossly at variance with experiment. This problem was not properly understood until 1904 when the physicist who was german Ludwig Prandtl introduced the concept of the boundary layer.

The carrier of the Prandtl’s continued into the period in which the first manned aircraft that were developed. We can say that since that time the air flow has been of as much interest to the physicists and the engineers as the water flow. And the hydrodynamics that has as a consequence generally become the dynamics of the fluid. The term which is fluid mechanics that is as used here which generally embraces both the dynamics of fluid and the subject still generally referred to as hydrostatics.

All About Fluid Mechanics

The term that is said to be the fluid mechanics is the study of the behaviour of fluid that is the liquids, the gases, human blood and plasmas which are at rest and in motion. The fluid mechanics that generally has a wide range of applications in mechanical and engineering that is the chemical engineering which is in the system which is biological. And in the subject like astrophysics. In this chapter which is said to be of fluid mechanics and its application as well in the system of biology are presented and discussed. At first that the fluid mechanics term governing the equations and blood properties are explained as well. In the following section which are the different models for blood as a fluid that is non-Newtonian are presented. In addition we can say that the blood flow in three important parts of the human system of cardiovascular arteries, and vein, and capillaries is generally studied and the equations which are presented. Finally we can say that the pulsatile blood flow in the body is introduced.

The term that is fluid mechanics is the study of fluids which is at rest and in motion. A fluid is generally  defined as a material that continuously deforms under a constant load. There are five relationships that are most useful in the problem of fluid mechanics that are named as: the kinematic, the stress, the conservation, the regulating, and the constitutive. The analysis of fluid mechanics can be altered depending on the choice of the system of interest and the volume of interest. which we can say is governed by the simplification of vector quantities. By assuming that a fluid is said to be a continuum we make the assumption that there are no inhomogeneities within the fluid. The term that is viscosity relates the shear rate to the stress which is the shear stress. The definition of a fluid is as Newtonian depends on whether the viscosity is constant at various shear rates.


The fluids of the Newtonian have constant viscosities which are said to be fluid non-Newtonian that have a nonconstant viscosity. For most of the applications of biofluid we assume that the fluid is Newtonian.

The studies of the fluid mechanics the systems with fluid such as gas or liquid under static and loads of dynamic. The mechanics that is the fluid mechanics is a branch of continuous mechanics that is in which the kinematics and mechanical behavior of materials are modeled as a continuous mass which is said to be rather than as discrete particles. The relation of fluid mechanics and continuous mechanics has been discussed by Bar-Meir which was in 2008. In the mechanics of fluid mechanics the continuous domain does not hold certain shapes and geometry like for example solids, and in many applications as well, the density of various fluids varies with time and position. Observations have shown some common problems involved in fluid mechanics. 

FAQs on Fluid Mechanics

Q1. Explain Why Fluid Mechanics is Important?

Ans: The term that is known as the fluid mechanics that generally helps us understand the behavior of fluid under various forces and at different conditions of the atmosphere. And we can say to select the fluid that is proper for various applications. This field is said to be studied in detail within Civil Engineering and also to great extent in Mechanical Engineering as well as Chemical Engineering.

Q2. Explain What is the Difference Between Fluid Mechanics and Fluid Dynamics?

Ans: the term that is fluid Mechanics is said to be the study of the forces on fluids. These fluids generally can be either a gas or a liquid. The term that is said to be fluid Mechanics includes both fluid as well as the statics the study of fluids at rest) and fluid dynamics (the study of fluids in motion.

Q3. Explain Who is the Father of Fluid Mechanics?

Ans: the abstract that is of Ludwig Prandtl

The Abstract. Ludwig Prandtl in 1875–1953 has been known as the father of modern aerodynamics. His name is said to be associated most famously with the boundary concept layer but also with several other topics which were in 20th-century fluid mechanics and particularly turbulence Prandtl's mixing length.

Students Also Read