Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Angular Speed

Reviewed by:
ffImage
Last updated date: 19th Sep 2024
Total views: 427.5k
Views today: 9.27k
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

Speed is a term that is used in various contexts in our day-to-day life For example how fast we are driving our car or how fast we pitch a ball. Similar to this context speed is basically defined or we can say referring to how fast or slow the object is moving. so angular speed  can be defined as  how quickly an object rotates. If we understand In other words it is described as the change per unit time in the angle of the object.

so if we are intended to calculate the speed of the rotational motion we shall be requiring the angular speed of it. Angular speeds formula specially for calculating the distance the body that covers in terms of rotation and revolutions to the time taken.

The radian is quite an important thing mentioned here. Whenever we can calculate the angular speed by the angle we measure it is in radians. Radians are defined as the way of measuring angles where we define the right angle - pi/2 radians. So one full revolution has contained around 6.28 radians.

Speed is the factor that we can denote how slow or fast an object moves. Angular speed is defined as the speed the object in rotational motion.

The formula of Angular Speed computes the distance which is covered by the body in terms of revolutions or rotations to the time taken. It is represented by the symbol ω and is given as the following:

Angular speed is given as=total distance which is covered or by a total time taken.

The Distance which is travelled and is represented as the symbol θ and is measured in radians. The time which is taken is measured in terms of seconds. so, the angular speed can be articulated in radians that is per seconds or rad/s.

Angular speed which is for a single complete rotation is denoted as:

ω = 2π/t

Angular speed is defined as the measure of how fast the angle of the center of a rotating body changes with respect to time. In this article we will learn more about the angular speed formula, and the relationship which is between angular speed and linear speed along with a few angular speed problems included as well.


Earth's Speed 

Angular speed can be defined as the rate of change of angular displacement and it is given by the expression:

ω=θt

where 

θ is defined as the angular displacement

t is defined the time

ω Is denoted as the angular speed

The angular speed of the unit is radian per second. Both angular velocity and angular speed are represented by the same formula. But it should be noted very kneely that angular velocity is very different from the angular speed. Angular velocity is defined as a vector quantity that expresses both magnitude and direction while angular speed is expressed the magnitude only.


Angular Velocity as a Vector Field

It also can be shown that the spin of the angular velocity vector field is exactly half of the curl of the linear velocity vector field which is denoted as v(r) of the rigid body. In symbols it is given as:

ω = ½ ▽*v


Rigid Body Considerations

[Image will be Uploaded Soon]

Position of P point which is  located in the rigid body which is shown in blue. Ri is the position with respect to the frame of the lab which is centered at O and ri and is the position with respect to the rigid body frame, centered at O′ as well. The rigid body origine is at vector position R from the frame of the lab.

Here it is not assumed that the rigid body always rotates around its origin. It can be rotated around an arbitrary point that is moving with a linear velocity which is denoted as V(t) in each instant.

For  obtaining the equations, it is very convenient to imagine a rigid body attached to the frames and then consider a system of coordinate that is fixed with respect to the rigid body. Then we will look at the coordinate transformations which are between this coordinate and the fixed "laboratory" system.

As shown in the above figure on the right the lab system's that origin is at O point, the rigid body has the  origin which is at O′ and the vector from O to O′ is R. A particle (i) which is in the rigid body is located at point P and the vector position of this particle  R is in the frame lab and at position ri in the frame of body. It is seen that the position of the particle can be written as the following:

Ri=R+ri


Consistency

We have already discussed the rigid body which rotates around an arbitrary point. The angular velocity spin previously defined is independent of the choice of origin which means that the spin of angular velocity is an intrinsic property of the spinning of the rigid body.

FAQs on Angular Speed

Q1. What is the Formula for Angular Speed?

Ans: Angular speed is denoted by ω. In a uniform circular motion case the average and instantaneous values are equal. in the form of units of radians per second (or rad/s). v = rω is the way they are written. Where letter r denotes the radius of the circular path.

Q2. What is the Angular Speed for 1 Revolution?

Ans: Around 6.28 radians

At whatever point we calculate the angular speed we can see that the angle we measure is in the form of radians. Radians are a way of measuring angles where we define the right angle as pi/2 radians. one full revolution therefore will contain around 6.28 radians approximately.

Q3. What is the Difference Between Angular Speed and Angular Velocity?

Ans: Angular velocity is a vector quantity that expresses both direction and magnitude while angular speed expresses the magnitude only.

Q4. How Do You Convert Linear Speed to Angular Speed?

Ans: If the letter v represents the speed which is linear speed of an object which is a rotating object, or we can say the radius and its angular velocity in units of radians per unit of time then v is given as v = rω.