Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 13 - In Hindi

ffImage
Last updated date: 27th May 2024
Total views: 478.8k
Views today: 4.78k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 8 Maths Chapter 13 Direct and Inverse Proportions in Hindi PDF Download

Download the Class 8 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 8, you have reached the right platform. The NCERT Solutions for Class 8 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. 


You will also be able to download the PDF file for NCERT Solutions for Class 8 Maths in English and Hindi from our website at absolutely free of cost. Subjects like Science, Maths, English will become easy to study if you have access to NCERT Solution for Class 8 Science , Maths solutions and solutions of other subjects.


NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards. 


We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.


Class:

NCERT Solutions For Class 8

Subject:

Class 8 Maths in Hindi

Chapter Name:

Chapter 13 - Direct and Inverse Proportions

Content Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Popular Vedantu Learning Centres Near You
centre-image
Mithanpura, Muzaffarpur
location-imgVedantu Learning Centre, 2nd Floor, Ugra Tara Complex, Club Rd, opposite Grand Mall, Mahammadpur Kazi, Mithanpura, Muzaffarpur, Bihar 842002
Visit Centre
centre-image
Anna Nagar, Chennai
location-imgVedantu Learning Centre, Plot No. Y - 217, Plot No 4617, 2nd Ave, Y Block, Anna Nagar, Chennai, Tamil Nadu 600040
Visit Centre
centre-image
Velachery, Chennai
location-imgVedantu Learning Centre, 3rd Floor, ASV Crown Plaza, No.391, Velachery - Tambaram Main Rd, Velachery, Chennai, Tamil Nadu 600042
Visit Centre
centre-image
Tambaram, Chennai
location-imgShree Gugans School CBSE, 54/5, School road, Selaiyur, Tambaram, Chennai, Tamil Nadu 600073
Visit Centre
centre-image
Avadi, Chennai
location-imgVedantu Learning Centre, Ayyappa Enterprises - No: 308 / A CTH Road Avadi, Chennai - 600054
Visit Centre
centre-image
Deeksha Vidyanagar, Bangalore
location-imgSri Venkateshwara Pre-University College, NH 7, Vidyanagar, Bengaluru International Airport Road, Bengaluru, Karnataka 562157
Visit Centre
View More

Access NCERT Solutions for Class 8 Maths Chapter 13 – सीधे और प्रतिलोम समानुपात

प्रश्नावली 13.1

1. एक रेलवे स्टेशन के निकट कार पार्किंग शुल्क इस प्रकार है

4 घंटों तक 60 रुपए

8 घंटों तक 100 रुपए 

12 घंटों तक 140 रुपए

24 घंटों तक 180 रुपए 

जाँच कीजिये कि क्या कार पार्किंग शुल्क पार्किंग समय के प्रत्यक्ष अनुपात में है?

उत्तर: दिया गया है की 4 घंटों का कार पार्किंग शुल्क है $=60$ रुपए तब 1 घंटों का कार पार्किंग शुल्क $=\frac{60}{4}=15$ रुपए

इसी प्रकार 8 घंटों का कार पार्किंग शुल्क= 100 रुपए

तब 1 घंटों का कार पार्किंग शुल्क $=\frac{100}{8}=12.50$ रुपए

12 घंटों का कार पार्किंग शुल्क= 140 रुपए

तब 1 घंटों का कार पार्किंग शुल्क $=\frac{140}{12}=11.67$ रुपए

24 घंटों का कार पार्किंग शुल्क $=180$

तब 1 घंटों का कार पार्किंग शुल्क $=\frac{180}{24}=7.5$ रुपए

यहाँ सभी का 1 घंटों का कार पार्किंग शुल्क समान नहीं है 

अत:  कार पार्किंग शुल्क पार्किंग समय के अनुपात में नहीं है।


2. एक पेंट के मूल मिश्रण के 8 भागों में लाल रंग के पदार्थ का 1 भाग मिलाकर मिश्रण तैयार किया जाता है। निम्नलिखित सरणी में, मूल मिश्रण के वे भाग ज्ञात कीजिए जिन्हें मिलाये जाने कि आवश्यकता है

लाल रंग  के पदार्थ का भाग 

1

4

7

12

20

मूल मिश्रण के भाग

8

…...

…...

…...

…..


उत्तर:  दिया गया है  पेंट के मूल मिश्रण के 8 भाग में लाल रंग के पदार्थ का 1 भाग मिलाया जाता 

है

मान मूल मिश्रण के $x$ भाग में लाल रंग के मिश्रण के 4 भागों में मिलाया गया है तब दोनों का अनुपात अर्थात

$\frac{1}{8}=\frac{4}{x}$

वज्र गुणन करने पर

$1 \times x=8 \times 4$

$x=32$

अतःलाल रंग के पदार्थ के 4 भाग में मूल मिश्रण का भाग $=32$

इसी प्रकार

लाल रंग के पदार्थ के 7 भाग में मूल मिश्रण का भाग $=8 \times 7=56$

लाल रंग के पदार्थ के 12 भाग में मूल मिश्रण का भाग $=8 \times 12=96$

लाल रंग के पदार्थ के 20 भाग में मूल मिश्रण का भाग $=8 \times 20=160$


3. प्रश्न 2 में यदि लाल रंग के पदार्थ के 1 भाग के लिए मूल मिश्रण की आवश्यकता 75ml होती है, तो मूल मिश्रण के 1800ml में कितना लाल रंग मिलाना चाहिए ?

उत्तर: दिया गया है  मूल मिश्रण में  लाल रंग के पदार्थ = 1   

माना $1800 \mathrm{ml}$ मूल मिश्रण में लाल रंग का पदार्थ = $x$

दोनों का अनुपात

तब $\frac{1}{75}=\frac{x}{1800}$

वज्र गुणन करने पर

$75 \times x=1800 \times 1$

$x=\frac{1800}{75}$

$x=24$

अतः $1800 \mathrm{ml}$ मूल मिश्रण में लाल रंग $=24$


4. किसी सॉफ्ट ड्रिंक फैक्ट्री में एक मशीन 840 बोतलें 6 घंटे में भरती है। वह मशीन 5 घंटे में कितनी बोतलें भरेगी ?

उत्तर: दिया गया है मशीन 840 बोतलें 6 घंटे में भरती है 

माना वह मशीन पाँच घंटे में $x$ बोतलें भरती है

दोनों का अनुपात

तब $\frac{6}{840}=\frac{5}{x}$

वज्र गुणन करने पर

$6 \times x=840 \times 5$

$x=\frac{840 \times 5}{6}$

$x=700$

अतः मशीन पाँच घंटे में कुल 700 बोतलें भरती है।


5. एक बैक्टीरिया या जीवाणु के फोटोग्राफ  50,000 गुना आवर्धित करने पर उसकी लम्बाई 5cm हो जाती  है। इस बैक्टीरिया की वास्तविक लम्बाई क्या है? यदि फोटोग्राफ को केवल 20,000 गुना आवर्धित किया जाये, तो उसकी आवर्धित लम्बाई क्या होगी?

उत्तर:  दिया गया है बैक्टीरिया की  फोटोग्राफ  50,000 गुना आवर्धित करने पर उसकी लम्बाई=50cm

माना बैक्टीरिया की फोटोग्राफ 20,000 गुना आवर्धित करने पर आवर्धित लम्बाई= $x$ दोनों का अनुपात

तब $\frac{5}{50000}=\frac{x}{20000}$

वज्र गुणन करने पर

$50000 \times x=20000 \times 5$

$x=\frac{20000 \times 5}{50000}$

$x=2$

अतः बैक्टीरिया की आवर्धित लम्बाई= $2 \mathrm{~cm}$


6. एक जहाज़ के मॉडल में उसका मस्तूल 9cm ऊँचा है, जबकि वास्तविक जहाज़ का मस्तूल 12m ऊंचा है। यदि जहाज़ कि लम्बाई 28m है, तो उसके मॉडल कि लम्बाई कितनी है? 

उत्तर:  दिया गया है जहाज़ के मॉडल के मस्तूल की लम्बाई=9cm 

वास्तविक मस्तूल की लम्बाई= $12 \mathrm{~m}$

जहाज़ कि लम्बाई $28 \mathrm{~m}$

माना जहाज़ के मॉडल की लम्बाई = $x$

दोनों का अनुपात

तब $\frac{12}{9}=\frac{28}{x}$

वज्र गुणन करने पर

$12 \times x=28 \times 9$

$x=\frac{28 \times 9}{12}$

$𝓍 = 21$

अतः जहाज़ के मॉडल कि लम्बाई= 21cm 


7. मान लीजिये $2 \mathrm{~kg}$ चीनी मे $9 \times 10^{6}$ क्रिस्टल हैं। निम्नलिखित चीनी में कितने चीनी के क्रिस्टल्स होंगे?

i. $5 \mathrm{~kg}$

उत्तर: दिया गया $2 \mathrm{~kg}$ चीनी मे क्रिस्टल $=9 \times 10^{6}$

माना $5 \mathrm{~kg}$ चीनी में क्रिस्टल $=\mathrm{x}$

दोनों का अनुपात

तब $\frac{2}{9 \times 10^{6}}=\frac{5}{x}$

वज्र गुणन करने पर

$2 \times x=5 \times 9 \times 10^{6}$

$x=\frac{45 \times 10^{6}}{2}$

$x=2.25 \times 10^{7}$

अत: $5 \mathrm{~kg}$ चीनी में क्रिस्टल $=2.25 \times 10^{7}$

ii. $1.2 \mathrm{~kg}$

उत्तर: दिया गया $2 \mathrm{~kg}$ चीनी मे क्रिस्टल $=9 \times 10^{6}$

माना $1.2 \mathrm{~kg}$ चीनी में क्रिस्टल $=\mathrm{x}$

दोनों का अनुपात

तब $\frac{2}{9 \times 10^{6}}=\frac{1.2}{x}$

वज्र गुणन करने पर

$2 \times x=1.2 \times 9 \times 10^{6}$

$x=\frac{1.2 \times 9 \times 10^{6}}{2}$

$x=5.4 \times 10^{6}$

अत: $1.2 \mathrm{~kg}$ चीनी में क्रिस्टल $=5.4 \times 10^{6}$


8. रश्मि के पास एक सड़क का मानचित्र है, जिसके पैमाने में 1 cm की दूरी 18 km निरूपित करती है। वह उस सड़क पर अपनी गाड़ी से 72km की दूरी तय करती है। उसके द्वारा तय की गयी दूरी मानचित्र में कितनी होगी?

उत्तर:  दिया गया पैमाने में $1 \mathrm{~cm}$ की दूरी $18 \mathrm{~km}$ निरूपित करती है माना उसके द्वारा मानचित्र में तय की गयी दूरी= $\mathrm{x}$

दोनों का अनुपात

तब $\frac{18}{1}=\frac{72}{x}$

वज्र गुणन करने पर

$18 \times x=72 \times 1$

$x=\frac{72}{18}$

$x=4$

अतः उसके द्वारा मानचित्र में तय की गयी दूरी= $4 \mathrm{~cm}$


9. एक 5m 60cm ऊँचे ऊर्ध्वाधर खम्बे की छाया की लम्बाई 3m 20cm है। उसी समय पर ज्ञात कीजिये:

i. 10m 50cm ऊँचे पर अन्य खम्बे की छाया की लम्बाई

उत्तर:  दिया गया है  5m 60cm ऊँचे ऊर्ध्वाधर खम्बे की छाया की लम्बाई= 3m 20cm

हम जानते है कि 5m 60cm = 5x100+60=500+60=560cm 

3m 20cm=3x100+20=300+20=320cm

दुसरे खम्बे की लम्बाई=10m 50cm=10 x 100+50=1000+50=1050cm

माना   खम्बे की छाया की लम्बाई= x

दोनों का अनुपात 

तब   $\frac{560}{320}=\frac{1050}{x}$

वज्र गुणन करने पर

$560 \times x=1050 \times 320$

$x=\frac{1050 \times 320}{560}$

$x=600$

अतः खम्बे की छाया की लम्बाई= 600 cm=6m 

ii. उस खम्बे की लम्बाई जिसकी छाया की लम्बाई $5 \mathrm{~m}$ है।

उत्तर: दिया गया है $5 \mathrm{~m} 60 \mathrm{~cm}$ ऊँचे ऊर्ध्वाधर खम्बे की छाया की लम्बाई= $3 \mathrm{~m} 20 \mathrm{~cm}$

हम जानते है कि $5 \mathrm{~m} 60 \mathrm{~cm}=5 \times 100+60=500+60=560 \mathrm{~cm}$

$3 \mathrm{~m} 20 \mathrm{~cm}=3 \times 100+20=300+20=320 \mathrm{~cm}$

दुसरे खम्बे की छाया की लम्बाई=5 $\mathrm{m}=5 \times 100=500 \mathrm{~cm}$

माना खम्बे की लम्बाई $=x$

दोनों का अनुपात

तब $\frac{560}{320}=\frac{\gamma}{500}$

वज्र गुणन करने पर

$320 \times x=\frac{560 \times 500}{30}$

$x=\frac{560 \times 500}{320}$

$x=875$

अतः खम्बे की छाया की लम्बाई= $875 \mathrm{~cm}=8 \mathrm{~m} 75 \mathrm{~cm}$


10. माल से लदा हुआ एक ट्रक 25 मिनट में $14 \mathrm{~km}$ चलता है।यदि चाल वही रहे तो वह 5 घंटे में कितनी दूरी तय कर पाएगा?

उत्तर: दिया गया 25 मिनट में तय दूरी $=14 \mathrm{~km}$

माना 5 घंटे में तय दूरी $=x$

दोनों का अनुपात समान होगा

तब $\frac{14}{25}=\frac{x}{300} \quad(5$ घंटे $=5 \times 60=300$ मिनट)

वज्र गुणन करने पर

$25 \times x=300 \times 14$

$x=\frac{300 \times 14}{25}$

$x=168$

अतः ट्रक द्वारा 5 घंटे में तय दूरी= $168 \mathrm{~km}$


प्रश्नावली- 13.2 

1. निम्नलिखित में से कौन प्रतिलोम में हैं ?

(i) किसी कार्य पर लगे व्यक्तियों की संख्या और उस कार्य को पूरा करने में लगा समय 

उत्तर:  यदि कार्य करने वाले  व्यक्तियों की संख्या कम की जाये  तो कार्य को पूरा करने में ज्यादा समय लगेगा। अत: यह प्रतिलोम समानुपात में है|

(ii) एक समान चाल से किसी यात्रा में लिया गया समय और तय दूरी ।

उत्तर:  यहाँ  समय का मान जितना अधिक होगा उतनी अधिक दूरी तय करनी पड़ेगी।अत: यह प्रत्यक्ष समानुपात में है|

(iii) खेती की गई भूमि का क्षेत्रफल और काटी गई फसल। 

उत्तर:  यदि खेती की गई भूमि का क्षेत्रफल  अधिक होगा तो  काटी गई फसल  भी अधिक होगी।  अत: यह प्रत्यक्ष समानुपात में  है|

(iv) एक निश्चित यात्रा में लिया गया समय और वाहन की चाल। 

उत्तर:  यदि निश्चित यात्रा में  वाहन की चाल अधिक हो जाती है तो यात्रा का समय कम हो जायेगा । अत: यह प्रतिलोम समानुपात में है| 

(v) किसी देश की जनसंख्या और प्रति व्यक्ति भूमि का क्षेत्रफल ।

उत्तर:  यदि किसी देश की जनसंख्या  अधिक होगी तो प्रतिव्यक्ति भूमि का क्षेत्रफल  कम होगा।अत: यह  प्रतिलोम समानुपात में  है|


2. एक टेलीविजन गेम शो (game show) में Rs. 1,00,000 की पुरस्कार राशि विजेताओं में समान रूप से वितरित की जानी है। निम्नलिखित सारणी को पूरा कीजिए तथा ज्ञात कीजिए कि एक व्यक्तिगत विजेता को दी जाने वाली पुरस्कार की धनराशि विजेताओं की संख्या के अनुक्रमानुपाती है या व्युत्क्रमानुपाती है।

विजेताओं की संख्या 

1

2

4

5

8

10

20

प्रत्येक विजेता का पुरस्कार (Rs. में)

1,00,000

50,000







उत्तर: 

(i) विजेताओं की संख्या= 4

प्रत्येक विजेता को मिलने वाली धनराशि $=\frac{100000}{4}=25,000$

(ii) विजेताओं की संख्या = 5

प्रत्येक विजेता को मिलने वाली धनराशि $=\frac{100000}{5}=20,000$

(iii) विजेताओं की संख्या= 8

प्रत्येक विजेता को मिलने वाली धनराशि $=\frac{100000}{8}=12,500$

(iv) विजेताओं की संख्या $=10$

प्रत्येक विजेता को मिलने वाली धनराशि $=\frac{100000}{10}=10,000$

(v) विजेताओं की संख्या $=20$

प्रत्येक विजेता को मिलने वाली धनराशि $=\frac{100000}{20}=5,000$

विजेता को दी जाने वाली पुरस्कार की धनराशि विजेताओं की संख्या के  व्युत्क्रमानुपाती है। क्योकि विजेताओं की संख्या बढ़ने  पर  प्रत्येक विजेता को दी जाने वाली  की राशि कम होगी।


3. रहमान तीलियों या डंडियों का प्रयोग करते हुए, एक पहिया बना रहा है। वह समान तीलियाँ इस प्रकार लगाना चाहता है कि किन्हीं भी क्रमागत तीलियों के युग्मों के बीच के कोण बराबर हैं। निम्नलिखित सारणी को पूरा करके, उसकी सहायता कीजिए: 

तीलियों की  संख्या


4

6

8

10

12

क्रमांगत तीलियों  के एक युग्म के बीच का कोण


90°

60°





उत्तर: पूर्ण सारणी

(a) तीलियों की संख्या $=8$

क्रमानुगत तीलियों के प्रत्येक युग्म के बीच का कोण = $\frac{360}{8}=45^{\circ}$

(b) तीलियों की संख्या = 10

क्रमानुगत तीलियों के प्रत्येक युग्म के बीच का कोण = $\frac{360}{10}=36^{\circ}$

(c) तीलियों की संख्या $=12$

क्रमानुगत तीलियों के प्रत्येक युग्म के बीच का कोण $=\frac{360}{12}=30^{\circ}$

i. क्या तीलियों की संख्या और क्रमागत तीलियों के किसी युग्म के बीच का कोण प्रतिलोम समानुपात में है?

उत्तर:   हाँ, तीलियों की संख्या तथा क्रमानुगत तीलियों के किसी भी  युग्म के बीच का  कोण  प्रतिलोम समानुपात में  है।

ii. तीलियों वाले एक पहिए के क्रमानुगत तीलियों के किसी युग्म का कोण परिकलित कीजिए।

उत्तर:  तीलियों की संख्या=  15 

क्रमानुगत तीलियों के प्रत्येक युग्म के बीच का कोण = $\frac{360}{15}=24^{\circ}$

iii. यदि क्रमागत तीलियों के प्रत्येक युग्म के बीच का कोण $40^{\circ}$ है, तो आवश्यक तीलियों की संख्या कितनी होगी?

उत्तर: दिया गया क्रमागत तीलियों के प्रत्येक युग्म के बीच का कोण $=40^{\circ}$

आवश्यक तीलियों की संख्या होगी= $\frac{360}{40}=9$

अत: आवश्यक तीलियों की संख्या=9


4. यदि किसी डिब्बे की मिठाई को 24 बच्चों में बाँटा जाए, तो प्रत्येक बच्चे को 5 मिठाइयाँ

मिलती हैं। यदि बच्चों की संख्या में 4 की कमी हो जाए तो प्रत्येक बच्चे को कितनी मिठाइयाँ मिलेंगी ?

उत्तर: 1 बच्चे को दी जाने वाली मिठाईयाँ = 5

तब 24 बच्चों को दी जाने वाली मिठाईयाँ $=24 \times 5=120$

कुल मिठाईयाँ $=120$

बच्चों की संख्या में 4 की कमी होने पर

शेष बच्चो की संख्या $=24-4=20$

प्रत्येक बच्चे को दी जाने वाली मिठाईयाँ $=\frac{120}{20}=6$

यदि बच्चों की संख्या में 4 की कमी हो जाए तो प्रत्येक बच्चे को 6 मिठाइयाँ मिलेगी।


5. एक किसान की पशुशाला में 20 पशुओं के लिए 6 दिन का पर्याप्त भोजन है। यदि इस पशुशाला में 10 पशु और आ जाएँ, तो यह भोजन कितने दिन तक पर्याप्त रहेगा ?

उत्तर:  दिया गया पशुशाला में वर्तमान पशुओं की संख्या=20

इनका पर्याप्त भोजन=6दिन

अब यदि 10 पशु और  बढ़ जाए

कुल पशुओं की संख्या=20+10=30

माना इनका पर्याप्त भोजन = x

दोनों का अनुपात प्रतिलोम  होगा

तब $\frac{20}{30}=\frac{x}{6}$

वज्र गुणन करने पर

$30 \times x=20 \times 6$

$x=\frac{20 \times 6}{30}$

$x=4$

अत: पशुशाला में 10 पशु और बढाये जाने पर यह भोजन 4 दिन तक चलेगा।


6. एक ठेकेदार यह आकलन करता है कि जसमिंदर के घर में पुनः तार लगाने का कार्य 3 व्यक्ति 4 दिन में कर सकते हैं। यदि वह तीन के स्थान पर चार व्यक्तियों को इस काम पर लगता है, तो यह कार्य कितने दिन में पूरा हो जाएगा ?

उत्तर:  दिया गया कार्य करने वाले व्यक्ति $=3$

कार्य पूरा करने में लगने वाले दिन $=4$

अब यदि कार्य करने वाले व्यक्ति $=3$

माना कार्य पूरा करने में लगे दिन $=x$

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{3}{4}=\frac{x}{4}$

$x=3$

अत: पुनः तार लगाने का कार्य 3 दिन में होगा।


7. बोतलों के बैच (batch) को 25 बक्सों में रखा जाता है, जबकि प्रत्येक बक्स में 12 बोतलें हैं। यदि इसी बैच की बोतलों को इस प्रकार रखा जाए कि प्रत्येक बक्स में 20 बोतलें हों, तो कितने बक्स भरे जाएँगे ?

उत्तर:  दिया गया बक्सों की संख्या=25

बक्स में रखे बोतलों की संख्या=12

अब यदि बक्स में रखे बोतलों की संख्या=20

माना  बक्स की संख्या=x

दोनौं का अनुपात प्रातेलोम होगा

तब $\frac{12}{20}=\frac{x}{25}$

वज्र गुणन करने पर

$20 \times x=12 \times 25$

$x=\frac{12 \times 25}{20}$

$x=15$

अत: प्रत्येक बक्स में 20 बोतलें होंने पर 15 बक्स भरेंगे।


8. एक फैक्ट्री को कुछ वस्तुएँ 63 दिन में बनाने के लिए 42 मशीनों की आवश्यकता होती है। उतनी ही वस्तुएँ 54 दिन में बनाने के लिए कितनी मशनों की आवश्यकता होगी ?

उत्तर:  दिया गया कुछ वस्तुओ को बनाने में लगे दिन=63

आवश्यक मशीनों की संख्या = 42

अब यदि इन वस्तुओ को बनाने में लगे दिन $=54$

माना आवश्यक मशीनों की संख्या=x

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{63}{54}=\frac{x}{42}$

वज्र गुणन करने पर

$54 \times x=63 \times 42$ $x=\frac{63 \times 42}{54}$ $x=49$

अत: वस्तुओ को 54 दिन में बनाने के लिए 49 मशीनों की आवश्यकता होगी।


9. एक कार एक स्थान तक पहुँचने में 60 km/h की चाल से चलकर 2 घंटे का समय लेती है। 80 km/h की चाल से उस कार को कितना समय लगेगा ?

उत्तर:  दिया गया चाल=60 km/h

समय=2 घंटे

अब यदि चाल=80km/h

माना इस चाल से कार को लगा समय $=x$

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{60}{80}=\frac{x}{2}$

वज्र गुणन करने पर

$80 \times x=60 \times 2$

$x=\frac{60 \times 2}{80}$

$x=\frac{3}{2}=1 \frac{1}{2}$

माना दिनों की संख्या है = $x$

अत: $80 \mathrm{~km} / \mathrm{h}$ की चाल से चलने पर $1 \frac{1}{2}$ घंटे का समय लगेगा।


10.  दो व्यक्ति एक घर में नई खिङकिया 3 दिन में लगा सकते हैं।

i. कार्य प्रारंभ होने से पहले, एक व्यक्ति बीमार पड़ जाता है। अब यह कार्य कितने दिन में पूरा हो पाएगा? 

उत्तर:  दिया गया व्यक्ति की संख्या = 2

लगने वाले दिन=3

यदि 1 व्यक्ति बीमार पड़े

शेष व्यक्ति=2-1=1

माना दिनों की संख्या है $=x$

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{2}{1}=\frac{x}{3}$

वज्र गुणन करने पर

$1 \times x=3 \times 2$

$x=6$

अत: कार्य करने में लगे दिन= 6

ii. एक ही दिन में खिडकियाँ लगवाने के लिए कितने व्यक्तियों की आवश्यकता होगी?

उत्तर: दिया गया व्यक्ति की संख्या = 2

लगने वाले दिन=3

अब यदि लगने वाले दिन=1

माना व्यक्तियों की संख्या = x

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{2}{x}=\frac{1}{3}$

वज्र गुणन करने पर

$1 \times x=3 \times 2$

$x=6$

अत: आवश्यक व्यक्ति=6


11. किसी स्कूल में, 45 मिनट अवधि के 8 कालांश होते हैं। यह कल्पना करते हुए कि स्कूल का कार्यकाल उतना ही रहता है, यदि स्कूल में बराबर अवधि के 9 कालांश हो तो प्रत्येक कालांश कितने समय का होगा ?

उत्तर:  दिया गया कालांश का समय =45मिनट 

कालांश की संख्या=8

अब यदि  कालांश की संख्या =9

माना  प्रत्येक कालांश का समय है = x

दोनों का अनुपात प्रतिलोम होगा

तब $\frac{8}{9}=\frac{x}{45}$

वज्र गुणन करने पर

$9 \times x=8 \times 45$

$x=40$

अत: प्रत्येक कालांश 40 मिनट का होगा|


NCERT Solutions for Class 8 Maths Chapter 13 Direct and Inverse Proportions in Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 8 Maths Chapter 13 solution Hindi medium is created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 8 Maths Chapter 13 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.

NCERT Solutions for Class 8 Maths Chapter 13 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 8 Maths Direct and Inverse Proportions solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that. 

NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 8 Maths Direct and Inverse Proportions in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 8 can download these solutions at any time as per their convenience for self-study purpose. 

These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 8 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.