Courses for Kids
Free study material
Offline Centres
Store Icon


Reviewed by:
Last updated date: 24th Jul 2024
Total views: 371.1k
Views today: 4.71k
hightlight icon
highlight icon
highlight icon
share icon
copy icon

What is the Point?

According to modern mathematics, a point usually refers to an element of some set known as space. Going more in-depth, in Euclidean geometry, a point is a primitive notation upon which the geometry is built. It means that a point cannot be defined in terms of the previously defined objects. Point is defined by some of the properties known as axioms and that must be satisfied. In specific, point geometry will not have length, volume, area or any other dimensional attribute. 


The dots shown in the above diagram is known as a point, but a point has really no size. 

Cartesian Coordinates

The exact location of the point can be shown using the cartesian coordinates. For clear understanding here we will see an example the point (12,5) 

Location of points

In point (12,5), X-axis is 12 units long and Y-axis is 5 units away from the centre. The left and right direction or horizontal direction is known as X-axis. And the up and down direction or vertical direction is known as the X-axis.

Points in the Euclidean Geometry 

Points is considered as the framework of Euclidean geometry and it is one of the most fundamental objects. Euclid defined a point as “ that which has no part”, in two-dimensional space, points are represented as ordered pairs (x,y) of numbers. Conventionally, this first line is represented in the horizontal line and the second line is represented on the vertical line. The idea can be easily assumed that three-dimensional Euclidean space is represented in the ordered triplet (x,y,z) in this edition of the third number represents the depth and denoted by z. 

Did you know?

Depending on the coordinates of the points, we can find the quadrant in which the point lies.

Like if the point is negative on the x-axis and positive for the y axis, thus the point must lie in the 2nd quadrant. And if the point is positive on the x-axis and negative on the y axis, thus the point lies in the 4th quadrant. If the point is negative in both the axis, thus the point lies in the third quadrant. And if the point is positive in both the axis, thus the point lies in the first quadrant.

Now, solve an example for proper understanding. 

Q. Find in which quadrant the point (-3,4) lies.

  1. Depending on the above-given statements, the point is negative on the x-axis and the point is positive on the y-axis so the point lies in the second quadrant.  

Let us See Some of the Solved Problems Related to Point in Math.

1. Find the Distance Between the Two Points A(4,3), B(8,6).

Answer. The distance between the two points A(4,3) and B(8,6).

Assuming the first point as x\[_{1}\], y\[_{1}\] and the second point as x\[_{2}\], y\[_{2}\].

To find the distance between the two points we have the formula AB = \[\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\]

Substituting all the values in the formula given above,

We get, =  \[\sqrt{(8 - 4)^{2} + (6 - 3)^{2}}\]

= \[\sqrt{(4)^{2} + (3)^{2}}\]

= \[\sqrt{16+9}\] 

=  \[\sqrt{25}\] 

=  5 units

So, the distance between the two points A and B is 5 units. 

2. Find the Coordinates of the Point on the X-axis, Which is at a Distance of 5 Units from the Point (6,-3). 

Answer. Let us assume that the coordinates of the points on the X-axis is (x,0).

The distance formula is, D = \[\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\]

Now, substitute the given values in the formula.

We get, 5 = \[\sqrt{(x - 6)^{2} + (0 - (- 3))^{2}}\]

implies, 25 = x\[^{2}\] - 12x + 36 + 9

Solving further we get, x=2 or x=10.

So the required points are (2,0) and (10,0).

FAQs on Point

1. What is the Importance of Point in Geometry?

Answer. A Point is the most fundamental object in geometry, which is represented by the dot and named by the capital letters. The main purpose of the point is to represent the position and its size is zero (that is, zero-length, zero-width, and zero height). 

2. How to Name a Line with Three Points?

Answer. Consider, there are three points A, B, and C. If all the three points lie on the same line, the lines that are named are line AB, line BC, line AC, line BA, line CB, and line CA.