Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 8: Binomial Theorem - Exercise 8.1

ffImage
Last updated date: 25th Apr 2024
Total views: 574.2k
Views today: 7.74k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem

Free PDF download of NCERT Solutions for Class 11 Maths Chapter 8 Exercise 8.1 (Ex 8.1) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 11 Maths Chapter 8 Binomial Theorem Exercise 8.1 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 11

Subject:

Class 11 Maths

Chapter Name:

Chapter 8 - Binomial Theorem

Exercise:

Exercise - 8.1

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class 11 Maths Chapter 8- Binomial Theorem

Exercise 8.1

1. Expand the expression ${\left( {1 - 2x} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {1 - 2x} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {1 - 2x} \right)^5} = {}^5{C_0}{\left( 1 \right)^5} - {}^5{C_1}{\left( 1 \right)^4}\left( {2x} \right) + {}^5{C_2}{\left( 1 \right)^3}{\left( {2x} \right)^2} - {}^5{C_3}{\left( 1 \right)^2}{\left( {2x} \right)^3} + {}^5{C_4}{\left( 1 \right)^1}{\left( {2x} \right)^4} \\ - {}^5{C_5}{\left( {2x} \right)^5} \\ = 1 - 5\left( {2x} \right) + 10\left( {4{x^2}} \right) - 10\left( {8{x^3}} \right) + 5\left( {16{x^4}} \right) - 32{x^5} \\ = 1 - 10x + 40{x^2} - 80{x^3} + 80{x^4} - 32{x^5} \\ \end{gathered}\]


2. Expand the expression ${\left( {\frac{2}{x} - \frac{x}{2}} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {\frac{2}{x} - \frac{x}{2}} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {\frac{2}{x} - \frac{x}{2}} \right)^5} = {}^5{C_0}{\left( {\frac{2}{x}} \right)^5} - {}^5{C_1}{\left( {\frac{2}{x}} \right)^4}\left( {\frac{x}{2}} \right) + {}^5{C_2}{\left( {\frac{2}{x}} \right)^3}{\left( {\frac{x}{2}} \right)^2} - {}^5{C_3}{\left( {\frac{2}{x}} \right)^2}{\left( {\frac{x}{2}} \right)^3} + {}^5{C_4}{\left( {\frac{2}{x}} \right)^1}{\left( {\frac{x}{2}} \right)^4} \\ - {}^5{C_5}{\left( {\frac{x}{2}} \right)^5} \\ = \frac{{32}}{{{x^5}}} - 5\left( {\frac{{16}}{{{x^4}}}} \right)\left( {\frac{x}{2}} \right) + 10\left( {\frac{8}{{{x^3}}}} \right)\left( {\frac{{{x^2}}}{4}} \right) - 10\left( {\frac{4}{{{x^2}}}} \right)\left( {\frac{{{x^3}}}{8}} \right) + 5\left( {\frac{2}{x}} \right)\left( {\frac{{{x^4}}}{{16}}} \right) - \frac{{{x^5}}}{{32}} \\ = \frac{{32}}{{{x^5}}} - \frac{{40}}{{{x^3}}} + \frac{{20}}{x} - 5x + \frac{5}{8}{x^3} - \frac{{{x^5}}}{{32}} \\ \end{gathered}\]


3. Expand the expression ${\left( {2x - 3} \right)^6}$.

Ans. By using Binomial Theorem, the expression ${\left( {2x - 3} \right)^6}$ can be expanded as

\[\begin{gathered} {\left( {2x - 3} \right)^6} = {}^6{C_0}{\left( {2x} \right)^6} - {}^6{C_1}{\left( {2x} \right)^5}\left( 3 \right) + {}^6{C_2}{\left( {2x} \right)^4}{\left( 3 \right)^2} - {}^6{C_3}{\left( {2x} \right)^3}{\left( 3 \right)^3} + {}^6{C_4}{\left( {2x} \right)^2}{\left( 3 \right)^4} \\ - {}^6{C_5}\left( {2x} \right){\left( 3 \right)^5} + {}^6{C_6}{\left( 3 \right)^6} \\ = 64{x^6} - 6\left( {32{x^5}} \right)\left( 3 \right) + 15\left( {16{x^4}} \right)\left( 9 \right) - 20\left( {8{x^3}} \right)\left( {27} \right) + 15\left( {4{x^2}} \right)\left( {81} \right) \\ - 6\left( {2x} \right)\left( {243} \right) + 729 \\ = 64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729 \\ \end{gathered}\]


4. Expand the expression ${\left( {\frac{x}{3} + \frac{1}{x}} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {\frac{x}{3} + \frac{1}{x}} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {\frac{x}{3} + \frac{1}{x}} \right)^5} = {}^5{C_0}{\left( {\frac{x}{3}} \right)^5} + {}^5{C_1}{\left( {\frac{x}{3}} \right)^4}\left( {\frac{1}{x}} \right) + {}^5{C_2}{\left( {\frac{x}{3}} \right)^3}{\left( {\frac{1}{x}} \right)^2} + {}^5{C_3}{\left( {\frac{x}{3}} \right)^2}{\left( {\frac{1}{x}} \right)^3} + {}^5{C_4}{\left( {\frac{x}{3}} \right)^1}{\left( {\frac{1}{x}} \right)^4} \\ + {}^5{C_5}{\left( {\frac{1}{x}} \right)^5} \\ = \frac{{{x^5}}}{{243}} + 5\left( {\frac{{{x^4}}}{{81}}} \right)\left( {\frac{1}{x}} \right) + 10\left( {\frac{{{x^3}}}{{27}}} \right)\left( {\frac{1}{{{x^2}}}} \right) + 10\left( {\frac{{{x^2}}}{9}} \right)\left( {\frac{1}{{{x^3}}}} \right) + 5\left( {\frac{x}{3}} \right)\left( {\frac{1}{{{x^4}}}} \right) + \frac{1}{{{x^5}}} \\ = \frac{{{x^5}}}{{243}} + \frac{{5{x^3}}}{{81}} + \frac{{10x}}{{27}} + \frac{{10}}{{9x}} + \frac{5}{{3{x^3}}} + \frac{1}{{{x^5}}} \\ \end{gathered} \]


5. Expand the expression ${\left( {x + \frac{1}{x}} \right)^6}$.

Ans. By using Binomial Theorem, the expression ${\left( {x + \frac{1}{x}} \right)^6}$ can be expanded as

\[\begin{gathered} {\left( {x + \frac{1}{x}} \right)^6} = {}^6{C_0}{\left( x \right)^6} + {}^6{C_1}{\left( x \right)^5}\left( {\frac{1}{x}} \right) + {}^6{C_2}{\left( x \right)^4}{\left( {\frac{1}{x}} \right)^2} + {}^6{C_3}{\left( x \right)^3}{\left( {\frac{1}{x}} \right)^3} + {}^6{C_4}{\left( x \right)^2}{\left( {\frac{1}{x}} \right)^4} \\ + {}^6{C_5}\left( x \right){\left( {\frac{1}{x}} \right)^5} + {}^6{C_6}{\left( {\frac{1}{x}} \right)^6} \\ = {x^6} + 6\left( {{x^5}} \right)\left( {\frac{1}{x}} \right) + 15\left( {{x^4}} \right)\left( {\frac{1}{{{x^2}}}} \right) + 20\left( {{x^3}} \right)\left( {\frac{1}{{{x^3}}}} \right) + 15\left( {{x^2}} \right)\left( {\frac{1}{{{x^4}}}} \right) + 6\left( x \right)\left( {\frac{1}{{{x^5}}}} \right) + \frac{1}{{{x^6}}} \\ = {x^6} + 6{x^4} + 15{x^2} + 20 + \frac{{15}}{{{x^2}}} + \frac{6}{{{x^4}}} + \frac{1}{{{x^6}}} \\ \end{gathered}\]

6. Using Binomial Theorem, evaluate ${\left( {96} \right)^3}$.

Ans. 96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $96 = 100 - 4$ 

\[\begin{gathered} {\left( {96} \right)^3} = {\left( {100 - 4} \right)^3} \\ = {}^3{C_0}{\left( {100} \right)^3} - {}^3{C_1}{\left( {100} \right)^2}\left( 4 \right) + {}^3{C_2}\left( {100} \right){\left( 4 \right)^2} - {}^3{C_3}{\left( 4 \right)^3} \\ = 1000000 - 3\left( {10000} \right)\left( 4 \right) + 3\left( {100} \right)\left( {16} \right) - 64 \\ = 1000000 - 120000 + 4800 - 64 \\ = 884736 \\ \end{gathered}\]

7. Using Binomial Theorem, evaluate ${\left( {102} \right)^5}$.

Ans. 102 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $102 = 100 + 2$ 

\[\begin{gathered} {\left( {102} \right)^5} = {\left( {100 + 2} \right)^5} \\ = {}^5{C_0}{\left( {100} \right)^5} + {}^5{C_1}{\left( {100} \right)^4}\left( 2 \right) + {}^5{C_2}{\left( {100} \right)^3}{\left( 2 \right)^2} + {}^5{C_3}{\left( {100} \right)^2}{\left( 2 \right)^3} + {}^5{C_4}\left( {100} \right){\left( 2 \right)^4} \\ + {}^5{C_5}{\left( 2 \right)^5} \\ = 10000000000 + 5\left( {100000000} \right)\left( 2 \right) + 10\left( {1000000} \right)\left( 4 \right) + 10\left( {10000} \right)\left( 8 \right) \\ + 5\left( {100} \right)\left( {16} \right) + 32 \\ = 10000000000 + 1000000000 + 40000000 + 80000 + 8000 + 32 \\ = 11040808032 \\ \end{gathered} \]

8. Using Binomial Theorem, evaluate ${\left( {101} \right)^4}$.

Ans. 101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $101 = 100 + 1$ 

\[\begin{gathered} {\left( {101} \right)^4} = {\left( {100 + 1} \right)^4} \\ = {}^4{C_0}{\left( {100} \right)^4} + {}^4{C_1}{\left( {100} \right)^3}\left( 1 \right) + {}^4{C_2}{\left( {100} \right)^2}{\left( 1 \right)^2} + {}^4{C_3}\left( {100} \right){\left( 1 \right)^3} + {}^4{C_4}{\left( 1 \right)^4} \\ = 100000000 + 4\left( {1000000} \right) + 6\left( {10000} \right) + 4\left( {100} \right) + 1 \\ = 100000000 + 4000000 + 60000 + 400 + 1 \\ = 104060401 \\ \end{gathered} \]

9. Using Binomial Theorem, evaluate ${\left( {99} \right)^5}$.

Ans. 99 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $99 = 100 - 1$ 

$\begin{gathered} {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} \\ = {}^5{C_0}{\left( {100} \right)^5} - {}^5{C_1}{\left( {100} \right)^4}\left( 1 \right) + {}^5{C_2}{\left( {100} \right)^3}{\left( 1 \right)^2} - {}^5{C_3}{\left( {100} \right)^2}{\left( 1 \right)^3} + {}^5{C_4}\left( {100} \right){\left( 1 \right)^4} \\ - {}^5{C_5}{\left( 1 \right)^5} \\ = 10000000000 - 5\left( {100000000} \right) - 10\left( {1000000} \right) - 10\left( {10000} \right) + 5\left( {100} \right) - 1 \\ = 10000000000 - 500000000 - 10000000 - 100000 + 500 - 1 \\ = 9509900499 \\ \end{gathered} $

10. Using Binomial Theorem, indicate which number is larger ${\left( {1.1} \right)^{10000}}$ or $1000$.

Ans. By splitting 1.1 and then applying Binomial Theorem, the first few terms of ${\left( {1.1} \right)^{10000}}$ be obtained as

\[\begin{gathered} {\left( {1.1} \right)^{10000}} = {\left( {1 + 0.1} \right)^{10000}} \\ = {}^{10000}{C_0} + {}^{10000}{C_1}\left( {1.1} \right) + {\text{Other positive terms}} \\ = 1 + 10000 \times 1.1 + {\text{Other positive terms}} \\ = 1 + 11000 + {\text{Other positive terms}} \\ > 1000 \\ \end{gathered}\] Hence, \[{\left( {1.1} \right)^{10000}} > 1000\]

11. Find ${\left( {a + b} \right)^4} - {\left( {a - b} \right)^4}$. Hence, evaluate ${\left( {\sqrt 3  + \sqrt 2 } \right)^4} - {\left( {\sqrt 3  - \sqrt 2 } \right)^4}$.

Ans. Using Binomial Theorem, the expressions, ${\left( {a + b} \right)^4}$ and ${\left( {a - b} \right)^4}$ , can be expanded as 

\[\begin{gathered} {\left( {a + b} \right)^4} = {}^4{C_0}{a^4} + {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} + {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} \\ {\left( {a - b} \right)^4} = {}^4{C_0}{a^4} - {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} - {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} \\ \end{gathered} \] Therefore, \[\begin{gathered} {\left( {a + b} \right)^4} - {\left( {a - b} \right)^4} = {}^4{C_0}{a^4} + {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} + {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} - \\ \left[ {{}^4{C_0}{a^4} - {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} - {}^4{C_3}a{b^3} + {}^4{C_4}{b^4}} \right] \\ = 2\left( {{}^4{C_1}{a^3}b + {}^4{C_3}a{b^3}} \right) \\ = 2\left( {4{a^3}b + 4a{b^3}} \right) \\ = 8ab\left( {{a^2} + {b^2}} \right) \\ \end{gathered} \] By putting $a = \sqrt 3 $ and $b = \sqrt 2 $, we obtain \[\begin{gathered} {\left( {\sqrt 3 + \sqrt 2 } \right)^4} - {\left( {\sqrt 3 - \sqrt 2 } \right)^4} = 8\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)\left[ {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} \right] \\ = 8\sqrt 6 \left( {3 + 2} \right) \\ = 40\sqrt 6 \\ \end{gathered} \]

12. Find ${\left( {x + 1} \right)^6} + {\left( {x - 1} \right)^6}$. Hence or otherwise evaluate ${\left( {\sqrt 2  + 1} \right)^6} + {\left( {\sqrt 2  - 1} \right)^6}$.

Ans. Using Binomial Theorem, the expressions, ${\left( {x + 1} \right)^6}$ and ${\left( {x - 1} \right)^6}$ , can be expanded as 

\[\begin{gathered} {\left( {x + 1} \right)^6} = {}^6{C_0}{x^6} + {}^6{C_1}{x^5} + {}^6{C_2}{x^4} + {}^6{C_3}{x^3} + {}^6{C_4}{x^2} + {}^6{C_5}x + {}^6{C_6} \hfill \\ {\left( {x - 1} \right)^6} = {}^6{C_0}{x^6} - {}^6{C_1}{x^5} + {}^6{C_2}{x^4} - {}^6{C_3}{x^3} + {}^6{C_4}{x^2} - {}^6{C_5}x + {}^6{C_6} \hfill \\ \end{gathered} \] Therefore, \[\begin{gathered} {\left( {x + 1} \right)^6} + {\left( {x - 1} \right)^6} = {}^6{C_0}{x^6} + {}^6{C_1}{x^5} + {}^6{C_2}{x^4} + {}^6{C_3}{x^3} + {}^6{C_4}{x^2} + {}^6{C_5}x + {}^6{C_6} \\ + \left[ {{}^6{C_0}{x^6} - {}^6{C_1}{x^5} + {}^6{C_2}{x^4} - {}^6{C_3}{x^3} + {}^6{C_4}{x^2} - {}^6{C_5}x + {}^6{C_6}} \right] \\ = 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4} + {}^6{C_4}{x^2} + {}^6{C_6}} \right) \\ = 2\left( {{x^6} + 15{x^4} + 15{x^2} + 1} \right) \\ \end{gathered} \] By putting $x = \sqrt 2 $, we obtain \[\begin{gathered} {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{{\left( {\sqrt 2 } \right)}^6} + 15{{\left( {\sqrt 2 } \right)}^4} + 15{{\left( {\sqrt 2 } \right)}^2} + 1} \right] \\ = 2\left[ {8 + 15 \cdot 4 + 15 \cdot 2 + 1} \right] \\ = 2\left[ {8 + 60 + 30 + 1} \right] \\ = 2 \times 99 \\ = 198 \\ \end{gathered} \]

13. Show that ${9^{n + 1}} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

Ans. In order to show that ${9^{n + 1}} - 8n - 9$ is divisible by 64, it has to be prove that, ${9^{n + 1}} - 8n - 9 = 64k$, where k is some natural number.

By Binomial Theorem,

${\left( {1 + a} \right)^m} = {}^m{C_0} + {}^m{C_1}a + {}^m{C_2}{a^2} + ... + {}^m{C_m}{a^m}$

For $a = 8$ and $m = n + 1$, we obtain

\[\begin{gathered} {\left( {1 + 8} \right)^{n + 1}} = {}^{n + 1}{C_0} + {}^{n + 1}{C_1}\left( 8 \right) + {}^{n + 1}{C_2}{\left( 8 \right)^2} + ... + {}^{n + 1}{C_{n + 1}}{\left( 8 \right)^{n + 1}} \\ {9^{n + 1}} = 1 + \left( {n + 1} \right)\left( 8 \right) + {8^2}\left[ {{}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{{\left( 8 \right)}^{n - 1}}} \right] \\ {9^{n + 1}} = 9 + 8n + 64\left[ {{}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{{\left( 8 \right)}^{n - 1}}} \right] \\ {9^{n + 1}} - 8n - 9 = 64k,{\text{ where }}k = {}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{\left( 8 \right)^{n - 1}}{\text{ is a natural number}} \\ \end{gathered} \]

Thus, ${9^{n + 1}} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

14. Prove that $\sum\limits_{r = 0}^n {{3^r}{}^n{C_r}}  = {4^n}$.

Ans. By Binomial Theorem,

$\sum\limits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}}  = {\left( {a + b} \right)^n}$

By putting $b = 3$ and $a = 1$ in the above equation, we obtain

$\begin{gathered} \sum\limits_{r = 0}^n {{}^n{C_r}{{\left( 1 \right)}^{n - r}}{{\left( 3 \right)}^r}} = {\left( {1 + 3} \right)^n} \\ \sum\limits_{r = 0}^n {{3^r}{}^n{C_r}} = {4^n} \\ \end{gathered} $

Hence proved.

NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem Exercise 8.1

Opting for the NCERT solutions for Ex 8.1 Class 11 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 8.1 Class 11 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 11 students who are thorough with all the concepts from the Subject Binomial Theorem textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 11 Maths Chapter 8 Exercise 8.1 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 11 Maths Chapter 8 Exercise 8.1, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.

Do not delay any more. Download the NCERT solutions for Class 11 Maths Chapter 8 Exercise 8.1 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

FAQs on NCERT Solutions for Class 11 Maths Chapter 8: Binomial Theorem - Exercise 8.1

Q1: What are some of the useful Binomial expansions?

Ans: Some useful binomial expansions are as follows: 

  • (x + y)n + (x−y)n = 2[C0 xn + C2 xn-1 y2 + C4 xn-4 y4 + …]

  • (x + y)n – (x−y)n = 2[C1 xn-1 y + C3 xn-3 y3 + C5 xn-5 y5 + …]

  • (1 + x)n  = nΣr-0 nCr . xr = [C0 + C1 x + C2 x2 + … Cn xn]

  • (1+x)n + (1 − x)n = 2[C0 + C2 x2+C4 x4 + …]

  • (1+x)n − (1−x)n = 2[C1 x + C3 x3 + C5 x5 + …]

  • The number of terms in the expansion of (x + a)n + (x−a)n are (n+2)/2 if “n” is even or (n+1)/2 if “n” is odd.

  • The number of terms in the expansion of (x + a)n − (x−a)n is (n/2) if “n” is even or (n+1)/2 if “n” is odd.

Q2: What are the Properties of Binomial Coefficients.

Ans: The various Properties of Binomial Coefficients as follows: 

  • C0 + C1 + C2 + … + Cn = 2n

  • C0 + C2 + C4 + … = C1 + C3 + C5 + … = 2n-1

  • C0 – C1 + C2 – C3 + … +(−1)n . nCn = 0

  • nC1 + 2.nC2 + 3.nC3 + … + n.nCn = n.2n-1

  • C1 − 2C2 + 3C3 − 4C4 + … +(−1)n-1 Cn = 0 for n > 1

  • C02 + C12 + C22 + …Cn2 = [(2n)!/ (n!)2]

Q3: What are the few important features of Binomial Expansion that students must know in this chapter?

Ans: Some important features of Binomial Expansion that students must know are as follows: 

  • The total number of terms in the expansion of (x+y)n is (n+1)

  • The sum of exponents of x and y is always n.

  • nC0, nC1, nC2, … .., nCn are called binomial coefficients and also represented by C0, C1, C2, ….., Cn

  • The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. nC0 = nCn, nC1 = nCn-1 , nC2 = nCn-2 ,….. Etc.

Q4: What are the various Applications of Binomial Theorem.

Ans: The various Applications of Binomial Theorem are as follows:

  • Finding Remainder using Binomial Theorem
    Ex: Find the remainder when 7105 is divided by 25

  • Finding Digits of a Number
    Ex: Find the last two digits of the number (13)10

  • Relation Between two Numbers
    Ex: Find the larger of 9950 + 10050 and 10150

  • Divisibility Test
    Ex: Show that 119 + 911 is divisible by 10.

Q5. Which is the best source for Class 11 Maths Chapter 8 Exercise 8.1for exam preparation?

Ans: The best resource for CBSE exam preparation is NCERT textbooks. Students must refer to NCERT Solutions for Class 11 Maths Chapter 8 Exercise 8.1 provided by Vedantu as it is one of the best study materials which provides them with a clear understanding of basics in an easy and simple manner. Studying these thoroughly before the exams will help the students to improve their problem-solving abilities and to score really well marks. These solutions which are available free of cost on the Vedantu website will also make the students gain a step-by-step understanding of the binomial theorem.

Q6. Explain the properties of positive integers in the Binomial Theorem.

Ans: In the chapter Binomial Theorem, students will get to learn more than 10 properties of positive integers by using the NCERT Solutions for Class 11 Maths Chapter 8. Students must understand and learn these properties as they are important to solve the equations efficiently.  In the annual exam, students will be asked questions from easy chapters but are tricky to solve. That is why students are recommended to go through the NCERT Solutions to score good marks.

Q7. What is the concept of Binomial Theorem covered in Chapter 8 of NCERT Solutions for Class 11 Maths Exercise 8.1?

Ans: The process of expanding the power of sums of two or more binomials algebraically is known as the Binomial Theorem. In the process of expansion,  the coefficients of binomial terms that are involved are called binomial coefficients. The chapter’s introduction has definitions of terms which the students have to study as they are important for the exams. Students can now refer to the NCERT Solutions which are available in PDF format to study and be updated about the latest syllabus of the CBSE board.

Q8. Why should students download NCERT Solutions for Class 11 Maths Chapter 8 Exercise 8.1 from Vedantu?

Ans: Vedantu provides students with the most accurate NCERT solutions making it easier for the students in their homework as well as exam preparation. These NCERT solutions can be viewed online and can also be downloaded in PDF format for free from the official website of Vedantu. The solutions for this exercise are explained in a stepwise and detailed manner very clearly by the Maths experts. Also, all the solutions are framed keeping in mind the guidelines of the CBSE. These solutions are available at free of cost on Vedantu(vedantu.com) and mobile app

Q9. Do I need to practice all the questions from Class 11 Maths Chapter 8 Exercise 8.1?

Ans: Yes. Students should practice all the questions from Class 11 Maths Chapter 8 Exercise 8.1. Students can refer to the NCERT solutions provided by Vedantu. This will help the students to understand the concepts clearly. Practising once or twice will be a quick revision of all the concepts and also students will know if they have difficulty in understanding any problem. Students should use their logical and analytical skills to solve them. It will also improve the student’s accuracy and speed.