
Write the following numbers in the expanded form: 120719
.
Answer
614.1k+ views
Hint: Break up the number according to their place value. The value of digits in a number increases as we move from left to right.
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
XIX+XXX A 49 B 51 C 55 D 44 class 5 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Which are the Top 10 Largest Countries of the World?

The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

