Answer
Verified
475.2k+ views
Hint: Break up the number according to their place value. The value of digits in a number increases as we move from left to right.
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Students Also Read