Write the following numbers in the expanded form: 120719
.
Last updated date: 18th Mar 2023
•
Total views: 304.8k
•
Views today: 5.84k
Answer
304.8k+ views
Hint: Break up the number according to their place value. The value of digits in a number increases as we move from left to right.
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
Recently Updated Pages
Paulings electronegativity values for elements are class 11 chemistry CBSE

For a particle executing simple harmonic motion the class 11 physics CBSE

Does Nichrome have high resistance class 12 physics CBSE

The function f satisfies the functional equation 3fleft class 12 maths JEE_Main

Write a letter to the Principal of your school to plead class 10 english CBSE

Look at the handout below Write a letter to the organizers class 11 english CBSE

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
