
Write the following numbers in the expanded form: 120719
.
Answer
603.6k+ views
Hint: Break up the number according to their place value. The value of digits in a number increases as we move from left to right.
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
“Complete step-by-step answer:”
Expanded form is not the same as expanded notation. In the expanded form, we break up a number according to their place value and expand it to show the value of each digit.
Each number has a place value. It determines the value of that digit according to its position in the number. The value of a digit in a number increases as we move from left to right. The digits on the left have lower place value than the digits on the right;
\[\begin{align}
& \overset{\overset{Lakh}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Thousand}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Hundred }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Tens}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Ones }}{\mathop{\downarrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore 120719=\left( 1\times 100000 \right)+\left( 2\times 10000 \right)+\left( 0\times 1000 \right)+\left( 7\times 100 \right)+\left( 1\times 10 \right)+\left( 9\times 1 \right) \\
& =1\times {{10}^{5}}+2\times {{10}^{4}}+0\times {{10}^{3}}+7\times {{10}^{2}}+1\times {{10}^{1}}+9\times {{10}^{0}} \\
\end{align}\]
Note: The 120719 can be also said as;
\[\begin{align}
& \underrightarrow{\text{Value of digit decreaes}} \\
& \underset{\underset{\begin{smallmatrix}
\text{ Hundred} \\
Thousand
\end{smallmatrix}}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{\begin{smallmatrix}
\text{ }Ten \\
Thousand
\end{smallmatrix}}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{Thousand}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Hundred}{\mathop{\uparrow }}\,}{\mathop{}}\,\underset{\underset{\text{ Tens }}{\mathop{\downarrow }}\,}{\mathop{}}\,\overset{\overset{Unit}{\mathop{\uparrow }}\,}{\mathop{}}\, \\
& \underleftarrow{\text{Value of digits increase}} \\
& \therefore \text{ Expanded form }=100000+20000+0+700+10+9 \\
& =120719 \\
\end{align}\]
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Which animal has three hearts class 11 biology CBSE

Who was the first woman to receive Bharat Ratna?

What are the major means of transport Explain each class 12 social science CBSE

