Answer

Verified

454.5k+ views

Hint: Take the second term of AP as a and common difference as d. Write three terms of AP and form equations relating terms of AP based on the data given in the question. Solve those equations to find the value of variables a and d. Substitute the value of variables to get the terms of AP.

Complete step-by-step answer:

We have three numbers in AP such that the sum of the numbers is 12 and the sum of cubes of the numbers is 288. We have to calculate the three numbers.

Let’s assume that the second term of the AP is a and the common difference of the terms is d.

Thus, we can write the other two terms as \[a-d\] and \[a+d\].

We know that the sum of these three numbers is 12. Thus, we have \[a-d+a+a+d=12\].

\[\begin{align}

& \Rightarrow 3a=12 \\

& \Rightarrow a=4 \\

\end{align}\]

We have to now find the value of common difference d.

We know that the sum of cubes of the numbers is 288. Thus, we have \[{{\left( a-d

\right)}^{3}}+{{a}^{3}}+{{\left( a+d \right)}^{3}}=288\].

We know that \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}\] and

\[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}\].

Thus, we have

\[{{a}^{3}}-{{d}^{3}}-3{{a}^{2}}d+3a{{d}^{2}}+{{a}^{3}}+{{a}^{3}}+{{d}^{3}}+3{{a}^{2}}d+3a{{d}^{

2}}=288\].

Simplifying the above expression, we have \[3{{a}^{3}}+6a{{d}^{2}}=288\].

Further simplifying the equation, we have \[{{a}^{3}}+2a{{d}^{2}}=96\].

Substituting the value \[a=4\] in the above equation, we have \[{{\left( 4 \right)}^{3}}+2\left(

4 \right){{d}^{2}}=96\].

\[\begin{align}

& \Rightarrow 64+8{{d}^{2}}=96 \\

& \Rightarrow 8{{d}^{2}}=32 \\

& \Rightarrow {{d}^{2}}=4 \\

& \Rightarrow d=\pm 2 \\

\end{align}\]

Substituting the value \[a=4,d=\pm 2\], we have the terms of our AP as 6,4,2 or 2,4,6.

Hence, the terms of AP are 2,4,6 or 6,4,2, which is option (a).

Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. One need not worry about getting two values of common difference and first term as they simply represent an increasing AP and a decreasing AP. We should also be careful while expanding the cubic power of equations.

Complete step-by-step answer:

We have three numbers in AP such that the sum of the numbers is 12 and the sum of cubes of the numbers is 288. We have to calculate the three numbers.

Let’s assume that the second term of the AP is a and the common difference of the terms is d.

Thus, we can write the other two terms as \[a-d\] and \[a+d\].

We know that the sum of these three numbers is 12. Thus, we have \[a-d+a+a+d=12\].

\[\begin{align}

& \Rightarrow 3a=12 \\

& \Rightarrow a=4 \\

\end{align}\]

We have to now find the value of common difference d.

We know that the sum of cubes of the numbers is 288. Thus, we have \[{{\left( a-d

\right)}^{3}}+{{a}^{3}}+{{\left( a+d \right)}^{3}}=288\].

We know that \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}\] and

\[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}\].

Thus, we have

\[{{a}^{3}}-{{d}^{3}}-3{{a}^{2}}d+3a{{d}^{2}}+{{a}^{3}}+{{a}^{3}}+{{d}^{3}}+3{{a}^{2}}d+3a{{d}^{

2}}=288\].

Simplifying the above expression, we have \[3{{a}^{3}}+6a{{d}^{2}}=288\].

Further simplifying the equation, we have \[{{a}^{3}}+2a{{d}^{2}}=96\].

Substituting the value \[a=4\] in the above equation, we have \[{{\left( 4 \right)}^{3}}+2\left(

4 \right){{d}^{2}}=96\].

\[\begin{align}

& \Rightarrow 64+8{{d}^{2}}=96 \\

& \Rightarrow 8{{d}^{2}}=32 \\

& \Rightarrow {{d}^{2}}=4 \\

& \Rightarrow d=\pm 2 \\

\end{align}\]

Substituting the value \[a=4,d=\pm 2\], we have the terms of our AP as 6,4,2 or 2,4,6.

Hence, the terms of AP are 2,4,6 or 6,4,2, which is option (a).

Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. One need not worry about getting two values of common difference and first term as they simply represent an increasing AP and a decreasing AP. We should also be careful while expanding the cubic power of equations.

Recently Updated Pages

Which of the following is correct regarding the Indian class 10 social science CBSE

Who was the first sultan of delhi to issue regular class 10 social science CBSE

The Nagarjuna Sagar project was constructed on the class 10 social science CBSE

Which one of the following countries is the largest class 10 social science CBSE

What is Biosphere class 10 social science CBSE

Read the following statement and choose the best possible class 10 social science CBSE

Trending doubts

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One cusec is equal to how many liters class 8 maths CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is a collective noun for bees class 10 english CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE