Answer
Verified
492.9k+ views
Hint: Take the second term of AP as a and common difference as d. Write three terms of AP and form equations relating terms of AP based on the data given in the question. Solve those equations to find the value of variables a and d. Substitute the value of variables to get the terms of AP.
Complete step-by-step answer:
We have three numbers in AP such that the sum of the numbers is 12 and the sum of cubes of the numbers is 288. We have to calculate the three numbers.
Let’s assume that the second term of the AP is a and the common difference of the terms is d.
Thus, we can write the other two terms as \[a-d\] and \[a+d\].
We know that the sum of these three numbers is 12. Thus, we have \[a-d+a+a+d=12\].
\[\begin{align}
& \Rightarrow 3a=12 \\
& \Rightarrow a=4 \\
\end{align}\]
We have to now find the value of common difference d.
We know that the sum of cubes of the numbers is 288. Thus, we have \[{{\left( a-d
\right)}^{3}}+{{a}^{3}}+{{\left( a+d \right)}^{3}}=288\].
We know that \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}\] and
\[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}\].
Thus, we have
\[{{a}^{3}}-{{d}^{3}}-3{{a}^{2}}d+3a{{d}^{2}}+{{a}^{3}}+{{a}^{3}}+{{d}^{3}}+3{{a}^{2}}d+3a{{d}^{
2}}=288\].
Simplifying the above expression, we have \[3{{a}^{3}}+6a{{d}^{2}}=288\].
Further simplifying the equation, we have \[{{a}^{3}}+2a{{d}^{2}}=96\].
Substituting the value \[a=4\] in the above equation, we have \[{{\left( 4 \right)}^{3}}+2\left(
4 \right){{d}^{2}}=96\].
\[\begin{align}
& \Rightarrow 64+8{{d}^{2}}=96 \\
& \Rightarrow 8{{d}^{2}}=32 \\
& \Rightarrow {{d}^{2}}=4 \\
& \Rightarrow d=\pm 2 \\
\end{align}\]
Substituting the value \[a=4,d=\pm 2\], we have the terms of our AP as 6,4,2 or 2,4,6.
Hence, the terms of AP are 2,4,6 or 6,4,2, which is option (a).
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. One need not worry about getting two values of common difference and first term as they simply represent an increasing AP and a decreasing AP. We should also be careful while expanding the cubic power of equations.
Complete step-by-step answer:
We have three numbers in AP such that the sum of the numbers is 12 and the sum of cubes of the numbers is 288. We have to calculate the three numbers.
Let’s assume that the second term of the AP is a and the common difference of the terms is d.
Thus, we can write the other two terms as \[a-d\] and \[a+d\].
We know that the sum of these three numbers is 12. Thus, we have \[a-d+a+a+d=12\].
\[\begin{align}
& \Rightarrow 3a=12 \\
& \Rightarrow a=4 \\
\end{align}\]
We have to now find the value of common difference d.
We know that the sum of cubes of the numbers is 288. Thus, we have \[{{\left( a-d
\right)}^{3}}+{{a}^{3}}+{{\left( a+d \right)}^{3}}=288\].
We know that \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}\] and
\[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}\].
Thus, we have
\[{{a}^{3}}-{{d}^{3}}-3{{a}^{2}}d+3a{{d}^{2}}+{{a}^{3}}+{{a}^{3}}+{{d}^{3}}+3{{a}^{2}}d+3a{{d}^{
2}}=288\].
Simplifying the above expression, we have \[3{{a}^{3}}+6a{{d}^{2}}=288\].
Further simplifying the equation, we have \[{{a}^{3}}+2a{{d}^{2}}=96\].
Substituting the value \[a=4\] in the above equation, we have \[{{\left( 4 \right)}^{3}}+2\left(
4 \right){{d}^{2}}=96\].
\[\begin{align}
& \Rightarrow 64+8{{d}^{2}}=96 \\
& \Rightarrow 8{{d}^{2}}=32 \\
& \Rightarrow {{d}^{2}}=4 \\
& \Rightarrow d=\pm 2 \\
\end{align}\]
Substituting the value \[a=4,d=\pm 2\], we have the terms of our AP as 6,4,2 or 2,4,6.
Hence, the terms of AP are 2,4,6 or 6,4,2, which is option (a).
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. One need not worry about getting two values of common difference and first term as they simply represent an increasing AP and a decreasing AP. We should also be careful while expanding the cubic power of equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
What is Commercial Farming ? What are its types ? Explain them with Examples