The length of the longest interval, in which $f(x)=3\sin x-4{{\sin }^{2}}x$ is increasing is,
A. $\dfrac{\pi }{3}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{3\pi }{2}$
D. $\pi $
Answer
Verified
507.9k+ views
Hint: Take $f(x)=3\sin x-4{{\sin }^{2}}x$ and differentiate it that is find ${{f}^{'}}(x)$. So if the function is increasing, put${{f}^{'}}(x)\ge 0$. You will get the answer.
Complete step-by-step answer:
Regarding intervals of increasing or decreasing on a graph, it is a popular convention to use only "open" interval notation. However, it is considered correct to use either "open" or "closed" notation when describing intervals of increasing or decreasing. References to $\pm $ infinity, however, are always "open" notation.
A function is increasing, if as x increases (reading from left to right), y also increases. In plain English, as you look at the graph, from left to right, the graph goes up-hill. The graph has a positive slope.
A function is strictly increasing on an interval, if when ${{x}_{1}}<{{x}_{2}}$, then $f({{x}_{1}})
If the function notation is bothering you, this definition can also be thought of as stating ${{x}_{1}}<{{x}_{2}}$implies ${{y}_{1}}<{{y}_{2}}$. As the $x$ get larger, then $y$ get larger.
A function is decreasing, if as $c$ increases (reading from left to right), $y$ decreases. In plain English, as you look at the graph, from left to right, the graph goes down-hill. The graph has a negative slope.
A function is strictly decreasing on an interval, if when ${{x}_{1}}<{{x}_{2}}$,
then $f({{x}_{1}})>f({{x}_{2}})$
If the function notation is bothering you, this definition can also be thought of as stating ${{x}_{1}}<{{x}_{2}}$implies ${{y}_{1}}>{{y}_{2}}$.
As the $x$ get larger the$y$ get smaller.
So now in question, we have given that, $f(x)=3\sin x-4{{\sin }^{2}}x$.
So we know the identity$3\sin x-4{{\sin }^{2}}x=\sin 3x$.
So we get$f(x)=\sin 3x$
So now let us find${{f}^{'}}(x)$.
${{f}^{'}}(x)=3\cos 3x$
So $f(x)$it is increasing.
So now putting${{f}^{'}}(x)\ge 0$.
So $3\cos 3x\ge 0$.
$3\cos 3x\ge \cos \dfrac{\pi }{2}$ or $3\cos 3x\ge \cos \dfrac{3\pi }{2}$
So we can see that in the interval $[0{}^\circ ,360{}^\circ ),$ $3x$ should be in the first or fourth quadrant.
$\Rightarrow 3x\in [0,90{}^\circ )\cup (270{}^\circ ,360{}^\circ )$
So $x\in [0{}^\circ ,30{}^\circ )\cup [90{}^\circ ,150{}^\circ )\cup [210{}^\circ ,270{}^\circ )\cup [330{}^\circ ,360{}^\circ ).$
So in the above, it can be seen that the length of the longest interval for which the function is increasing is $60{}^\circ $=$\dfrac{\pi }{3}$radians.
So the final answer we get the longest term for $\sin 3x$ is $\dfrac{\pi }{3}$.
So option(A) is correct.
Note: Read the question in a careful manner. So you should be familiar with the concepts of increasing and decreasing functions. You should also know when open brackets are used and when closed brackets are used. You should also know the identities such as$3\sin x-4{{\sin }^{2}}x=\sin 3x$. Most of the mistakes occur at$3\cos 3x\ge 0$ that is to put$\le or\ge $so don’t make mistakes.
Complete step-by-step answer:
Regarding intervals of increasing or decreasing on a graph, it is a popular convention to use only "open" interval notation. However, it is considered correct to use either "open" or "closed" notation when describing intervals of increasing or decreasing. References to $\pm $ infinity, however, are always "open" notation.
A function is increasing, if as x increases (reading from left to right), y also increases. In plain English, as you look at the graph, from left to right, the graph goes up-hill. The graph has a positive slope.
A function is strictly increasing on an interval, if when ${{x}_{1}}<{{x}_{2}}$, then $f({{x}_{1}})
If the function notation is bothering you, this definition can also be thought of as stating ${{x}_{1}}<{{x}_{2}}$implies ${{y}_{1}}<{{y}_{2}}$. As the $x$ get larger, then $y$ get larger.
A function is decreasing, if as $c$ increases (reading from left to right), $y$ decreases. In plain English, as you look at the graph, from left to right, the graph goes down-hill. The graph has a negative slope.
A function is strictly decreasing on an interval, if when ${{x}_{1}}<{{x}_{2}}$,
then $f({{x}_{1}})>f({{x}_{2}})$
If the function notation is bothering you, this definition can also be thought of as stating ${{x}_{1}}<{{x}_{2}}$implies ${{y}_{1}}>{{y}_{2}}$.
As the $x$ get larger the$y$ get smaller.
So now in question, we have given that, $f(x)=3\sin x-4{{\sin }^{2}}x$.
So we know the identity$3\sin x-4{{\sin }^{2}}x=\sin 3x$.
So we get$f(x)=\sin 3x$
So now let us find${{f}^{'}}(x)$.
${{f}^{'}}(x)=3\cos 3x$
So $f(x)$it is increasing.
So now putting${{f}^{'}}(x)\ge 0$.
So $3\cos 3x\ge 0$.
$3\cos 3x\ge \cos \dfrac{\pi }{2}$ or $3\cos 3x\ge \cos \dfrac{3\pi }{2}$
So we can see that in the interval $[0{}^\circ ,360{}^\circ ),$ $3x$ should be in the first or fourth quadrant.
$\Rightarrow 3x\in [0,90{}^\circ )\cup (270{}^\circ ,360{}^\circ )$
So $x\in [0{}^\circ ,30{}^\circ )\cup [90{}^\circ ,150{}^\circ )\cup [210{}^\circ ,270{}^\circ )\cup [330{}^\circ ,360{}^\circ ).$
So in the above, it can be seen that the length of the longest interval for which the function is increasing is $60{}^\circ $=$\dfrac{\pi }{3}$radians.
So the final answer we get the longest term for $\sin 3x$ is $\dfrac{\pi }{3}$.
So option(A) is correct.
Note: Read the question in a careful manner. So you should be familiar with the concepts of increasing and decreasing functions. You should also know when open brackets are used and when closed brackets are used. You should also know the identities such as$3\sin x-4{{\sin }^{2}}x=\sin 3x$. Most of the mistakes occur at$3\cos 3x\ge 0$ that is to put$\le or\ge $so don’t make mistakes.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE