Answer
Verified
493.5k+ views
Hint: Take the quantity that should be taken away as P then write the equation as $3{{x}^{2}}-4{{y}^{2}}+5xy+20-P=-{{x}^{2}}-{{y}^{2}}+6xy+20,$ then, do necessary operations to get P which is the answer.
Complete step-by-step answer:
Let the quantity be that should be taken as P.
So, we can write it as,
$3{{x}^{2}}-4{{y}^{2}}+5xy+20-P=-{{x}^{2}}-{{y}^{2}}+6xy+20$
Now taking P from right hand side of equation to left hand side we can write it as,
$3{{x}^{2}}-4{{y}^{2}}+5xy+20=P-{{x}^{2}}-{{y}^{2}}+6xy+20$
Now reversing the equation we get,
$P-{{x}^{2}}-{{y}^{2}}+6xy+20=3{{x}^{2}}-4{{y}^{2}}+5xy+20.........(i)$
Now for solving an equation we will make use of facts which are,
i) If a = b then a+c = b+c for any value c. This means that we can add a number ‘c’ to both the sides of the equation and the value of the equation does not change.
ii) If a = b then a-c = b-c for any value c. This means that we can subtract a number ‘c’ from both the sides of the equation and the value of the equation does not change.
iii) If a = b then ac = bc for any non-zero value of c, so that the value of the equation remains unaltered.
iv) If a = b then $\dfrac{a}{b}=\dfrac{b}{c}$ for any non-zero value of c, so that the value of the equation remains unaltered.
These points are very important and help very much while solving any liner type of equation.
They should be kept in mind.
Now adding ${{x}^{2}}+{{y}^{2}}$ on both sides in equation (i), we get
$P+6xy+20=4{{x}^{2}}-3{{y}^{2}}+5xy+20$
Now subtracting 6xy from both the sides we get,
$P+20=4{{x}^{2}}-3{{y}^{2}}-xy+20$
Now subtracting ‘20’ from both sides we get,
$P=4{{x}^{2}}-3{{y}^{2}}-xy$
Hence the quantity which should be subtracted is $4{{x}^{2}}-3{{y}^{2}}-xy$
Note: Be careful about the calculation needed in the problem as they are a bit complex. There is also another way is to just subtract the 2nd expression from the 1st expression to get the answer.
Another way of solving this problem is just transferring the unknowns on the left hand side and known values as well as the same terms on the right hand side. Then solve accordingly.
Complete step-by-step answer:
Let the quantity be that should be taken as P.
So, we can write it as,
$3{{x}^{2}}-4{{y}^{2}}+5xy+20-P=-{{x}^{2}}-{{y}^{2}}+6xy+20$
Now taking P from right hand side of equation to left hand side we can write it as,
$3{{x}^{2}}-4{{y}^{2}}+5xy+20=P-{{x}^{2}}-{{y}^{2}}+6xy+20$
Now reversing the equation we get,
$P-{{x}^{2}}-{{y}^{2}}+6xy+20=3{{x}^{2}}-4{{y}^{2}}+5xy+20.........(i)$
Now for solving an equation we will make use of facts which are,
i) If a = b then a+c = b+c for any value c. This means that we can add a number ‘c’ to both the sides of the equation and the value of the equation does not change.
ii) If a = b then a-c = b-c for any value c. This means that we can subtract a number ‘c’ from both the sides of the equation and the value of the equation does not change.
iii) If a = b then ac = bc for any non-zero value of c, so that the value of the equation remains unaltered.
iv) If a = b then $\dfrac{a}{b}=\dfrac{b}{c}$ for any non-zero value of c, so that the value of the equation remains unaltered.
These points are very important and help very much while solving any liner type of equation.
They should be kept in mind.
Now adding ${{x}^{2}}+{{y}^{2}}$ on both sides in equation (i), we get
$P+6xy+20=4{{x}^{2}}-3{{y}^{2}}+5xy+20$
Now subtracting 6xy from both the sides we get,
$P+20=4{{x}^{2}}-3{{y}^{2}}-xy+20$
Now subtracting ‘20’ from both sides we get,
$P=4{{x}^{2}}-3{{y}^{2}}-xy$
Hence the quantity which should be subtracted is $4{{x}^{2}}-3{{y}^{2}}-xy$
Note: Be careful about the calculation needed in the problem as they are a bit complex. There is also another way is to just subtract the 2nd expression from the 1st expression to get the answer.
Another way of solving this problem is just transferring the unknowns on the left hand side and known values as well as the same terms on the right hand side. Then solve accordingly.
Recently Updated Pages
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
Which body formulates the foreign policy of India class 10 social science ICSE
What is the message of the poem Nine Gold Medals class 10 english ICSE
The aqueous solution of aluminium chloride is acidic due to
When NaCl is dissolved in water the sodium ion becomes
Give the summary of the story the enchanted pool class 10 english ICSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
What makes elections in India democratic class 11 social science CBSE
Explain the following Women workers in Britain attacked class 11 social science CBSE