Show that the points (2, −1, 3), (4, 3, 1) and (3, 1, 2) are collinear.
Answer
362.1k+ views
Hint: Here we go through by finding the direction ratios between the points, because we know that the points are collinear if their direction ratios are proportional.
Complete step-by-step answer:
Given points are (2, −1, 3), (4, 3, 1) and (3, 1, 2).
Now we let the names of points as A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2).
We know that three points A, B, C are collinear if direction ratios of AB and BC are proportional.
Now we have to find the direction ratio of AB,
As we know the formula of finding the direction ratio between two point $({x_1},{y_1},{z_1})$ and $({x_2},{y_2},{z_2})$ is $({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})$
Therefore the direction ratio of AB is (4-2, 3-(-1), 1-3) i.e. (2, 4, -2).
Similarly we find the direction ratio of BC (3-4, 1-3, 2-1) i.e. (-1, -2, 1).
Let the direction ratio of AB (2, 4, -2) as $({a_1},{b_1},{c_1})$ and direction ratio of BC (-1, -2, 1) as $({a_2},{b_2},{c_2})$
$\therefore {a_1} = 2,{\text{ }}{b_1} = 4,{\text{ }}{c_1} = - 2$ And ${a_2} = - 1,{\text{ }}{b_2} = - 2,{\text{ }}{c_2} = 1$
And now we check whether these points are in proportion or not.
$\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{ - 2}}{1}$
Therefore A, B, C are collinear.
Note: Whenever we face such a type of question for finding the collinearly of a point whether it is collinear or not. We have to simply find the direction ratio of that point if their direction ratio is in proportion we can say that the points are collinear. The second method is just to find the value of the determinant of the following point if the result is zero then we can say that lines are collinear.
Complete step-by-step answer:
Given points are (2, −1, 3), (4, 3, 1) and (3, 1, 2).
Now we let the names of points as A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2).
We know that three points A, B, C are collinear if direction ratios of AB and BC are proportional.
Now we have to find the direction ratio of AB,
As we know the formula of finding the direction ratio between two point $({x_1},{y_1},{z_1})$ and $({x_2},{y_2},{z_2})$ is $({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})$
Therefore the direction ratio of AB is (4-2, 3-(-1), 1-3) i.e. (2, 4, -2).
Similarly we find the direction ratio of BC (3-4, 1-3, 2-1) i.e. (-1, -2, 1).
Let the direction ratio of AB (2, 4, -2) as $({a_1},{b_1},{c_1})$ and direction ratio of BC (-1, -2, 1) as $({a_2},{b_2},{c_2})$
$\therefore {a_1} = 2,{\text{ }}{b_1} = 4,{\text{ }}{c_1} = - 2$ And ${a_2} = - 1,{\text{ }}{b_2} = - 2,{\text{ }}{c_2} = 1$
And now we check whether these points are in proportion or not.
$\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{ - 2}}{1}$
Therefore A, B, C are collinear.
Note: Whenever we face such a type of question for finding the collinearly of a point whether it is collinear or not. We have to simply find the direction ratio of that point if their direction ratio is in proportion we can say that the points are collinear. The second method is just to find the value of the determinant of the following point if the result is zero then we can say that lines are collinear.
Last updated date: 22nd Sep 2023
•
Total views: 362.1k
•
Views today: 6.62k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Write an application to the principal requesting five class 10 english CBSE

What were the social economic and political conditions class 10 social science CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
