
Prove the trigonometric expression: \[\tan 3A\tan 2A\tan A=\tan 3Atan2AtanA\]
Answer
601.2k+ views
Hint: Try to use the identity $\tan \left( A+B \right)=\dfrac{\tan A+tanB}{1-\tan A\tan B}$. Then substitute ‘B’ as ‘2A’ and do further calculations to get the result.
Complete step-by-step answer:
For proving what is the asked in the question we have to use the identity
$\tan \left( A+B \right)=\dfrac{\tan A+tanB}{1-\tan A\tan B}$
Where A and B are any 2 angles.
First of all we have to prove the identity by using the facts.
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B,cos\left( A+B \right)=\cos A\cos B-\sin A\sin B\]
Consider the identity,$\tan \left( A+B \right)=\dfrac{\sin (A+B)}{\cos (A+B)}$
Now we can write it as,
$\tan \left( A+B \right)=\dfrac{\text{sinA cosB+cosA sinB}}{\text{cosA cosB-sinA sinB}}$
Now dividing by $\cos A\cos B$ in numerator and denominator we get,
$\tan \left( A+B \right)=\dfrac{\dfrac{\text{sinA cosB}}{\text{cosA cosB}}\text{+}\dfrac{\text{cosA sinB}}{\text{cosA cosB}}}{\dfrac{\text{cosA cosB}}{\text{cosA cosB}}\text{ - }\dfrac{\text{sinA sinB}}{\text{cosA cosB}}}$
Cancelling the like terms, we get
$\tan \left( A+B \right)=\dfrac{\operatorname{tanA}+tanB}{\text{1-tanA tanB}}$
Now we can use the identity by taking ‘B’ as ‘2A’
Here by substituting B as 2A we get,
$\tan \left( A+2A \right)=\dfrac{\operatorname{tanA}+tan2A}{\text{1-tanA tan2A}}$
On further simplification we get,
$\tan \left( 3A \right)=\dfrac{\operatorname{tanA}+tan2A}{\text{1-tan2A tanA}}$
Now on cross multiplication we get,
$\tan \left( 3A \right)\left\{ 1-\tan A\tan 2 \right.\left. A \right\}=\tan A+\tan 2A$
Opening the bracket, we get
$\left\{ \tan \left( 3A \right)-\tan A\tan 2 \right.\left. A\tan \left( 3A \right) \right\}=\tan A+\tan 2A$
Now on rearranging the terms, by taking (tanA + tan2A) from right to left hand side and taking tanA tan2A tan3A from left to right hand side we get,
tan 3A – tan 2A – tan A = tan A tan 2A tan 3A.
Hence proved.
Note: Students while proving the identity get stuck after the $\dfrac{\sin (A+B)}{\cos (A+B)}$ part they forget how to divide cos A cos B to both numerator and denominator. Also, while doing cross multiplication be careful to avoid any calculation errors.
Another way to solve this is using the identity, $\tan \left( A \right)=\dfrac{\sin (A)}{\cos (A)}$. But this becomes a lengthy process.
Complete step-by-step answer:
For proving what is the asked in the question we have to use the identity
$\tan \left( A+B \right)=\dfrac{\tan A+tanB}{1-\tan A\tan B}$
Where A and B are any 2 angles.
First of all we have to prove the identity by using the facts.
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B,cos\left( A+B \right)=\cos A\cos B-\sin A\sin B\]
Consider the identity,$\tan \left( A+B \right)=\dfrac{\sin (A+B)}{\cos (A+B)}$
Now we can write it as,
$\tan \left( A+B \right)=\dfrac{\text{sinA cosB+cosA sinB}}{\text{cosA cosB-sinA sinB}}$
Now dividing by $\cos A\cos B$ in numerator and denominator we get,
$\tan \left( A+B \right)=\dfrac{\dfrac{\text{sinA cosB}}{\text{cosA cosB}}\text{+}\dfrac{\text{cosA sinB}}{\text{cosA cosB}}}{\dfrac{\text{cosA cosB}}{\text{cosA cosB}}\text{ - }\dfrac{\text{sinA sinB}}{\text{cosA cosB}}}$
Cancelling the like terms, we get
$\tan \left( A+B \right)=\dfrac{\operatorname{tanA}+tanB}{\text{1-tanA tanB}}$
Now we can use the identity by taking ‘B’ as ‘2A’
Here by substituting B as 2A we get,
$\tan \left( A+2A \right)=\dfrac{\operatorname{tanA}+tan2A}{\text{1-tanA tan2A}}$
On further simplification we get,
$\tan \left( 3A \right)=\dfrac{\operatorname{tanA}+tan2A}{\text{1-tan2A tanA}}$
Now on cross multiplication we get,
$\tan \left( 3A \right)\left\{ 1-\tan A\tan 2 \right.\left. A \right\}=\tan A+\tan 2A$
Opening the bracket, we get
$\left\{ \tan \left( 3A \right)-\tan A\tan 2 \right.\left. A\tan \left( 3A \right) \right\}=\tan A+\tan 2A$
Now on rearranging the terms, by taking (tanA + tan2A) from right to left hand side and taking tanA tan2A tan3A from left to right hand side we get,
tan 3A – tan 2A – tan A = tan A tan 2A tan 3A.
Hence proved.
Note: Students while proving the identity get stuck after the $\dfrac{\sin (A+B)}{\cos (A+B)}$ part they forget how to divide cos A cos B to both numerator and denominator. Also, while doing cross multiplication be careful to avoid any calculation errors.
Another way to solve this is using the identity, $\tan \left( A \right)=\dfrac{\sin (A)}{\cos (A)}$. But this becomes a lengthy process.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

