Answer
Verified
491.7k+ views
Hint: Use compound interest formula for the calculation of amount $A$, given by: \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\]. From this calculate amount $A$ after \[t=2\text{ years}\] and \[t=3\text{ years}\] and then take the difference for the calculation of interest obtained in\[3\text{rd year}\].
Complete step-by-step answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit. It is the result of reinvesting interest, rather than paying it out, so the interest in the next period is then earned on the principal sum plus previously accumulated interest.
The total accumulated amount $A$ , on the principal sum \[P\] plus compound interest $I$ is given by the formula \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\].
Here, \[A\] is the amount obtained, $t$ is the number of years, \[r\] is the rate, $P$ is the principal and \[n\] is the number of times the interest is given in a year.
The total compound interest generated is given by: $I=A-P$.
Now, we have been given that:
$P=\text{Rs 8000}$, $r=5%=\dfrac{5}{100}=0.05$, $n=1$.
(i) The amount credited at the end of the second year i.e. $t=2\text{ years}$ can be calculated as:
\[\begin{align}
& \therefore {{A}_{2}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 2}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{2}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{2}}=\text{Rs }8820. \\
\end{align}\]
Hence, the credited amount after two years is \[\text{Rs }8820\].
(ii) Now, to calculate the interest for the third year we need to subtract the amount ${{A}_{2}}$ obtained after two years form the amount ${{A}_{3}}$ obtained after three years.
\[\begin{align}
& \therefore {{A}_{3}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 3}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{3}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{3}}=\text{Rs 9261}. \\
\end{align}\]
The interest $I$ for the third year is given by:
$\begin{align}
& I={{A}_{3}}-{{A}_{2}} \\
& \text{ }=9261-8820 \\
& \text{ }=441. \\
\end{align}$
Hence, the interest for the third year is \[\text{Rs }441\].
Note: Here, the value of $n$ must be substituted carefully. We have to read the question carefully as it is given that the rate is compounded annually, therefore, $n=1$ is substituted. We must divide the given rate by 100 and then substitute in the equation.
Complete step-by-step answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit. It is the result of reinvesting interest, rather than paying it out, so the interest in the next period is then earned on the principal sum plus previously accumulated interest.
The total accumulated amount $A$ , on the principal sum \[P\] plus compound interest $I$ is given by the formula \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\].
Here, \[A\] is the amount obtained, $t$ is the number of years, \[r\] is the rate, $P$ is the principal and \[n\] is the number of times the interest is given in a year.
The total compound interest generated is given by: $I=A-P$.
Now, we have been given that:
$P=\text{Rs 8000}$, $r=5%=\dfrac{5}{100}=0.05$, $n=1$.
(i) The amount credited at the end of the second year i.e. $t=2\text{ years}$ can be calculated as:
\[\begin{align}
& \therefore {{A}_{2}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 2}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{2}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{2}}=\text{Rs }8820. \\
\end{align}\]
Hence, the credited amount after two years is \[\text{Rs }8820\].
(ii) Now, to calculate the interest for the third year we need to subtract the amount ${{A}_{2}}$ obtained after two years form the amount ${{A}_{3}}$ obtained after three years.
\[\begin{align}
& \therefore {{A}_{3}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 3}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{3}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{3}}=\text{Rs 9261}. \\
\end{align}\]
The interest $I$ for the third year is given by:
$\begin{align}
& I={{A}_{3}}-{{A}_{2}} \\
& \text{ }=9261-8820 \\
& \text{ }=441. \\
\end{align}$
Hence, the interest for the third year is \[\text{Rs }441\].
Note: Here, the value of $n$ must be substituted carefully. We have to read the question carefully as it is given that the rate is compounded annually, therefore, $n=1$ is substituted. We must divide the given rate by 100 and then substitute in the equation.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
What is Commercial Farming ? What are its types ? Explain them with Examples
Why is monsoon considered a unifying bond class 10 social science CBSE
a Why did Mendel choose pea plants for his experiments class 10 biology CBSE