
In the adjoining figure, $CBA$ is secant and $CD$ is tangent to the circle. If $AB=7cm$ and
$BC=9cm$, then find the length of $CD$.
Answer
595.8k+ views
Hint: We can equate the ratio of corresponding sides of similar triangles if we can prove that any two triangles that contain the sides $AC$, $BC$ and $CD$ are similar triangles. By equating this ratio, we can get a relation between these three sides.
In the above figure, let us consider $\Delta ADC$and $\Delta DBC$.
From the figure, we can see that the angle $C$ is common in both triangles. So, we can write
$\angle C=\angle C........\left( i \right)$
Also, there is a property of the circle which is related to the tangent and chord. This property states that
“the angle between the chord and the tangent is equal to the angle made by the chord in the alternative
segment”. Using this property in the above figure in $\Delta ADC$and $\Delta DBC$, we get
$\angle DAC=\angle BDC.......\left( ii \right)$
From equation $\left( i \right)$ and equation $\left( ii \right)$ , using $AA$ similarity rule, we get that
the triangles are similar.
$\Delta ADC\sim \Delta DBC$
Since these two triangles are similar, we can equate the ratio of corresponding sides of the
corresponding triangles. This means that we can equate the following sides,
$\dfrac{BC}{DC}=\dfrac{DC}{AC}$
$\Rightarrow {{\left( DC \right)}^{2}}=AC\times BC........(iii)$
It is given in the question that side $BC=9cm$.
We can see from the figure that $ABC$ is a straight line. So, we can obtain a relation as below,
$AC=AB+BC........(iv)$
Substituting values of $AB=7cm$ and $BC=9cm$ in equation $(iv)$, we get
$AC=7+9$
$\Rightarrow AB=7cm$
Substituting the values of $AC=16cm$ and $BC=9cm$ in equation $\left( iii \right)$, we get
${{\left( DC \right)}^{2}}=16\times 9$
$\Rightarrow DC=\sqrt{16\times 9}$
$\Rightarrow DC=\sqrt{16}\times \sqrt{9}$
$\Rightarrow DC=4\times 3$
$\Rightarrow DC=12cm$
$\Rightarrow DC=CD=12cm$
Note: In this question, we have to find a relation between the sides $AC$ and $BC$, whose lengths are already given in the question, so as to obtain the required side $CD$. That is why we have to prove similarity of the triangles to obtain a relation between the length of these sides.
In the above figure, let us consider $\Delta ADC$and $\Delta DBC$.
From the figure, we can see that the angle $C$ is common in both triangles. So, we can write
$\angle C=\angle C........\left( i \right)$
Also, there is a property of the circle which is related to the tangent and chord. This property states that
“the angle between the chord and the tangent is equal to the angle made by the chord in the alternative
segment”. Using this property in the above figure in $\Delta ADC$and $\Delta DBC$, we get
$\angle DAC=\angle BDC.......\left( ii \right)$
From equation $\left( i \right)$ and equation $\left( ii \right)$ , using $AA$ similarity rule, we get that
the triangles are similar.
$\Delta ADC\sim \Delta DBC$
Since these two triangles are similar, we can equate the ratio of corresponding sides of the
corresponding triangles. This means that we can equate the following sides,
$\dfrac{BC}{DC}=\dfrac{DC}{AC}$
$\Rightarrow {{\left( DC \right)}^{2}}=AC\times BC........(iii)$
It is given in the question that side $BC=9cm$.
We can see from the figure that $ABC$ is a straight line. So, we can obtain a relation as below,
$AC=AB+BC........(iv)$
Substituting values of $AB=7cm$ and $BC=9cm$ in equation $(iv)$, we get
$AC=7+9$
$\Rightarrow AB=7cm$
Substituting the values of $AC=16cm$ and $BC=9cm$ in equation $\left( iii \right)$, we get
${{\left( DC \right)}^{2}}=16\times 9$
$\Rightarrow DC=\sqrt{16\times 9}$
$\Rightarrow DC=\sqrt{16}\times \sqrt{9}$
$\Rightarrow DC=4\times 3$
$\Rightarrow DC=12cm$
$\Rightarrow DC=CD=12cm$
Note: In this question, we have to find a relation between the sides $AC$ and $BC$, whose lengths are already given in the question, so as to obtain the required side $CD$. That is why we have to prove similarity of the triangles to obtain a relation between the length of these sides.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

