
If the points \[\left( {2a,a} \right)\] , \[(a,2a)\] and \[(a,a)\] enclose a triangle of area 18 square. units, then the centroid of the triangle is equal to -
(A) \[(4,4)\]
(B) \[(8,8)\]
(C) \[( - 4, - 4)\]
(D) \[(4\sqrt 2 ,4\sqrt 2 )\]
(E) \[(6,6)\]
Answer
481.8k+ views
Hint: According to the given, use the given points in the formula to get the area of triangle \[ = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] and calculate the value of a. Then, calculate centroid of triangle \[ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\] by substituting the calculated values.
Formula used:
Here, we can use the formula to find area of triangle \[ = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] and centroid of triangle \[ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Complete step-by-step answer:
As we are given with the area of triangle =18 and the points \[\left( {2a,a} \right)\] , \[(a,2a)\] and \[(a,a)\].
So, we will substitute the values as \[({x_1},{y_1}) = \]\[\left( {2a,a} \right)\] , \[({x_2},{y_2}) = \]\[(a,2a)\] , \[({x_3},{y_3}) = \]\[(a,a)\] .
Firstly we will calculate area of triangle to get the value of a by using the formula
Area of triangle \[ = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] .
After substituting all the given values we get,
$\Rightarrow$ \[18 = \dfrac{1}{2}\left[ {2a\left( {2a - a} \right) + a(a - a) + a(a - 2a)} \right]\]
Taking 2 on the left hand side we get,
$\Rightarrow$ \[36 = \left[ {2a\left( {2a - a} \right) + a(a - a) + a(a - 2a)} \right]\]
After solving all the brackets we get,
$\Rightarrow$ \[36 = \left[ {2{a^2} + 0 - {a^2}} \right]\]
So, \[{a^2} = 36\]
Hence \[a = 6, - 6\]
Now, we will calculate the centroid of the triangle by using the formula
Centroid of triangle \[ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
By substituting the given values we get,
\[ \Rightarrow \left( {\dfrac{{2a + a + a}}{3}} \right)\left( {\dfrac{{a + 2a + a}}{3}} \right)\]
On simplifying we get,
\[ \Rightarrow \left( {\dfrac{{4a}}{3}} \right)\left( {\dfrac{{4a}}{3}} \right)\]
Here, we will first put the value of \[a = 6\]
So, we get
\[ \Rightarrow \left( {\dfrac{{24}}{3}} \right)\left( {\dfrac{{24}}{3}} \right)\]
On dividing we get,
Centroid of triangle is \[(8,8)\]
Then, we will put the value of \[a = - 6\]
So, we get
\[ \Rightarrow \left( {\dfrac{{ - 24}}{3}} \right)\left( {\dfrac{{ - 24}}{3}} \right)\]
On dividing we get,
Centroid of the triangle is \[( - 8, - 8)\] which is not given in the option.
So, we will consider Centroid of triangle = \[(8,8)\]
So, the correct option is (B) \[(8,8)\]
Note: To solve these types of questions you can also use the alternative method to calculate the area in the above question is given by, We are using the formula as area of triangle \[ = \dfrac{1}{2}\left| A \right|\] as, \[\left| A \right|\] is given by \[\left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
On substituting the values we get,
\[18 = \dfrac{1}{2}\left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
After taking 2 on the left side we get,
\[36 = \left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
On opening determinant we get,
\[36 = 2a(2a - a) - a(a - a) + 1({a^2} - 2{a^2})\]
After simplifying we get,
\[{a^2} = 36\]
So, \[a = \pm 6\]
Therefore, we can calculate the centroid of the triangle by using the same formula as done in the above answer.
Formula used:
Here, we can use the formula to find area of triangle \[ = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] and centroid of triangle \[ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Complete step-by-step answer:
As we are given with the area of triangle =18 and the points \[\left( {2a,a} \right)\] , \[(a,2a)\] and \[(a,a)\].

So, we will substitute the values as \[({x_1},{y_1}) = \]\[\left( {2a,a} \right)\] , \[({x_2},{y_2}) = \]\[(a,2a)\] , \[({x_3},{y_3}) = \]\[(a,a)\] .
Firstly we will calculate area of triangle to get the value of a by using the formula
Area of triangle \[ = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] .
After substituting all the given values we get,
$\Rightarrow$ \[18 = \dfrac{1}{2}\left[ {2a\left( {2a - a} \right) + a(a - a) + a(a - 2a)} \right]\]
Taking 2 on the left hand side we get,
$\Rightarrow$ \[36 = \left[ {2a\left( {2a - a} \right) + a(a - a) + a(a - 2a)} \right]\]
After solving all the brackets we get,
$\Rightarrow$ \[36 = \left[ {2{a^2} + 0 - {a^2}} \right]\]
So, \[{a^2} = 36\]
Hence \[a = 6, - 6\]
Now, we will calculate the centroid of the triangle by using the formula
Centroid of triangle \[ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
By substituting the given values we get,
\[ \Rightarrow \left( {\dfrac{{2a + a + a}}{3}} \right)\left( {\dfrac{{a + 2a + a}}{3}} \right)\]
On simplifying we get,
\[ \Rightarrow \left( {\dfrac{{4a}}{3}} \right)\left( {\dfrac{{4a}}{3}} \right)\]
Here, we will first put the value of \[a = 6\]
So, we get
\[ \Rightarrow \left( {\dfrac{{24}}{3}} \right)\left( {\dfrac{{24}}{3}} \right)\]
On dividing we get,
Centroid of triangle is \[(8,8)\]
Then, we will put the value of \[a = - 6\]
So, we get
\[ \Rightarrow \left( {\dfrac{{ - 24}}{3}} \right)\left( {\dfrac{{ - 24}}{3}} \right)\]
On dividing we get,
Centroid of the triangle is \[( - 8, - 8)\] which is not given in the option.
So, we will consider Centroid of triangle = \[(8,8)\]
So, the correct option is (B) \[(8,8)\]
Note: To solve these types of questions you can also use the alternative method to calculate the area in the above question is given by, We are using the formula as area of triangle \[ = \dfrac{1}{2}\left| A \right|\] as, \[\left| A \right|\] is given by \[\left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
On substituting the values we get,
\[18 = \dfrac{1}{2}\left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
After taking 2 on the left side we get,
\[36 = \left| \begin{array}{l}2a{\rm{ a 1}}\\{\rm{a 2a 1}}\\{\rm{a a 1}}\end{array} \right|\]
On opening determinant we get,
\[36 = 2a(2a - a) - a(a - a) + 1({a^2} - 2{a^2})\]
After simplifying we get,
\[{a^2} = 36\]
So, \[a = \pm 6\]
Therefore, we can calculate the centroid of the triangle by using the same formula as done in the above answer.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

The largest brackish water lake in India is A Wular class 9 biology CBSE
