If A is a matrix such that \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\], then find ${A^2}$.
Last updated date: 27th Mar 2023
•
Total views: 307.8k
•
Views today: 8.84k
Answer
307.8k+ views
Hint: Multiply the matrix A with itself using the multiplication rule of matrices.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
