
If A is a matrix such that \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\], then find ${A^2}$.
Answer
620.7k+ views
Hint: Multiply the matrix A with itself using the multiplication rule of matrices.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

