
If A is a matrix such that \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\], then find ${A^2}$.
Answer
602.4k+ views
Hint: Multiply the matrix A with itself using the multiplication rule of matrices.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. For finding ${A^2}$, we will multiply A with itself. So, we’ll get:
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha + \sin \alpha \cos \alpha } \\
{ - \sin \alpha \cos \alpha + \cos \alpha \left( { - \sin \alpha } \right)}&{ - {{\sin }^2}\alpha + {{\cos }^2}\alpha }
\end{array}} \right], \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha } \\
{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right], \\
$
We know that $2\sin \alpha \cos \alpha = \sin 2\alpha {\text{ and }}{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha $, substituting these value above, we’ll get:
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Thus, matrix ${A^2}$ is $\left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{\sin 2\alpha } \\
{ - \sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$.
Note: For matrix multiplication to exist, it is necessary that the column of the first matrix must be the same as the row of the second matrix otherwise multiplication will not be defined.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

