
Find the value of:
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right] = ?$
Answer
617.1k+ views
Hint: To solve this type of question we have to use properties of exponents like ${\left[ {{a^m}} \right]^{\dfrac{1}{n}}} = {\left[ a \right]^{\dfrac{m}{n}}}$ and many more properties.
Complete step-by-step answer:
We have given,
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right]$
We can write it as
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{2 \times \dfrac{{ - 3}}{2}}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$ $\left[ {\because {{\left( {{a^m}} \right)}^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}} \right]$ and $\left[ {{a^m} \div {b^{ - n}} = \dfrac{{{a^m}}}{{{b^{ - n}}}} = {a^m} \times {b^n}} \right]$
Now we have
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{ - 3}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$
On solving we get
$ \Rightarrow {\left[ {{{\left( {{4^4}} \right)}^{\dfrac{{ - 1}}{8}}}} \right]^{ - 3}} \div {\left[ {4 \times 2} \right]^{ - 1}}$ $\left[ {\because {a^m} \times {b^m} = {{\left( {a \times b} \right)}^m}} \right]$
Now using the property ${\left[ {{{\left( a \right)}^m}} \right]^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}$ we get,
$
\Rightarrow {\left( {{4^4}} \right)^{\dfrac{3}{8}}} \times 8 \\
\Rightarrow {\left( 4 \right)^{\dfrac{3}{2}}} \times 8 = {2^3} \times 8 = 64 \\
$
Hence the required answer is 64.
Note: Whenever we get this type of question the key concept of solving is you have to use your brain as which property of the exponent should apply to make it easier to solve because there is nothing in this type of question other than properties.
Complete step-by-step answer:
We have given,
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right]$
We can write it as
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{2 \times \dfrac{{ - 3}}{2}}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$ $\left[ {\because {{\left( {{a^m}} \right)}^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}} \right]$ and $\left[ {{a^m} \div {b^{ - n}} = \dfrac{{{a^m}}}{{{b^{ - n}}}} = {a^m} \times {b^n}} \right]$
Now we have
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{ - 3}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$
On solving we get
$ \Rightarrow {\left[ {{{\left( {{4^4}} \right)}^{\dfrac{{ - 1}}{8}}}} \right]^{ - 3}} \div {\left[ {4 \times 2} \right]^{ - 1}}$ $\left[ {\because {a^m} \times {b^m} = {{\left( {a \times b} \right)}^m}} \right]$
Now using the property ${\left[ {{{\left( a \right)}^m}} \right]^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}$ we get,
$
\Rightarrow {\left( {{4^4}} \right)^{\dfrac{3}{8}}} \times 8 \\
\Rightarrow {\left( 4 \right)^{\dfrac{3}{2}}} \times 8 = {2^3} \times 8 = 64 \\
$
Hence the required answer is 64.
Note: Whenever we get this type of question the key concept of solving is you have to use your brain as which property of the exponent should apply to make it easier to solve because there is nothing in this type of question other than properties.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


