
Find the value of:
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right] = ?$
Answer
617.1k+ views
Hint: To solve this type of question we have to use properties of exponents like ${\left[ {{a^m}} \right]^{\dfrac{1}{n}}} = {\left[ a \right]^{\dfrac{m}{n}}}$ and many more properties.
Complete step-by-step answer:
We have given,
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right]$
We can write it as
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{2 \times \dfrac{{ - 3}}{2}}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$ $\left[ {\because {{\left( {{a^m}} \right)}^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}} \right]$ and $\left[ {{a^m} \div {b^{ - n}} = \dfrac{{{a^m}}}{{{b^{ - n}}}} = {a^m} \times {b^n}} \right]$
Now we have
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{ - 3}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$
On solving we get
$ \Rightarrow {\left[ {{{\left( {{4^4}} \right)}^{\dfrac{{ - 1}}{8}}}} \right]^{ - 3}} \div {\left[ {4 \times 2} \right]^{ - 1}}$ $\left[ {\because {a^m} \times {b^m} = {{\left( {a \times b} \right)}^m}} \right]$
Now using the property ${\left[ {{{\left( a \right)}^m}} \right]^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}$ we get,
$
\Rightarrow {\left( {{4^4}} \right)^{\dfrac{3}{8}}} \times 8 \\
\Rightarrow {\left( 4 \right)^{\dfrac{3}{2}}} \times 8 = {2^3} \times 8 = 64 \\
$
Hence the required answer is 64.
Note: Whenever we get this type of question the key concept of solving is you have to use your brain as which property of the exponent should apply to make it easier to solve because there is nothing in this type of question other than properties.
Complete step-by-step answer:
We have given,
$\left[ {{{\left[ {{{\left( {256} \right)}^{ - \left( {{4^{\dfrac{{ - 3}}{2}}}} \right)}}} \right]}^{ - 3}} \div {{\left[ {{4^3} \div {2^{ - 3}}} \right]}^{\dfrac{{ - 1}}{3}}}} \right]$
We can write it as
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{2 \times \dfrac{{ - 3}}{2}}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$ $\left[ {\because {{\left( {{a^m}} \right)}^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}} \right]$ and $\left[ {{a^m} \div {b^{ - n}} = \dfrac{{{a^m}}}{{{b^{ - n}}}} = {a^m} \times {b^n}} \right]$
Now we have
${\left[ {{{\left( {{4^4}} \right)}^{ - \left( {{2^{ - 3}}} \right)}}} \right]^{ - 3}} \div {\left[ {{4^3} \times {2^3}} \right]^{\dfrac{{ - 1}}{3}}}$
On solving we get
$ \Rightarrow {\left[ {{{\left( {{4^4}} \right)}^{\dfrac{{ - 1}}{8}}}} \right]^{ - 3}} \div {\left[ {4 \times 2} \right]^{ - 1}}$ $\left[ {\because {a^m} \times {b^m} = {{\left( {a \times b} \right)}^m}} \right]$
Now using the property ${\left[ {{{\left( a \right)}^m}} \right]^{\dfrac{p}{q}}} = {a^{m \times \dfrac{p}{q}}}$ we get,
$
\Rightarrow {\left( {{4^4}} \right)^{\dfrac{3}{8}}} \times 8 \\
\Rightarrow {\left( 4 \right)^{\dfrac{3}{2}}} \times 8 = {2^3} \times 8 = 64 \\
$
Hence the required answer is 64.
Note: Whenever we get this type of question the key concept of solving is you have to use your brain as which property of the exponent should apply to make it easier to solve because there is nothing in this type of question other than properties.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

Distinguish between population growth and population class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE


