
Find the value of \[\dfrac{1}{x} - \dfrac{1}{y}\] if \[{\left( {2.3} \right)^x} = {\left( {0.23} \right)^y} = 1000\]
Answer
607.5k+ views
Hint: Use the logarithmic functions by taking two cases so that the exponential terms comes down to bases and then solve each case to get the value of x and y respectively to put it in \[\dfrac{1}{x} - \dfrac{1}{y}\].
Complete step-by-step answer:
It is given that \[{\left( {2.3} \right)^x} = {\left( {0.23} \right)^y} = 1000\]
We will pair each one of them with 1000 to get different answers
Let us take the first case as \[{\left( {2.3} \right)^x} = 1000\]
Now this can be written as
\[{\left( {2.3} \right)^x} = {\left( {10} \right)^3}\]
Taking log in both the sides we get it as
\[\begin{array}{l}
\therefore \log {\left( {2.3} \right)^x} = \log {\left( {10} \right)^3}\\
\Rightarrow x\log \left( {2.3} \right) = 3\log 10\\
\Rightarrow x\log \left( {2.3} \right) = 3\\
\Rightarrow x = \dfrac{3}{{\log (2.3)}}\\
\Rightarrow \dfrac{1}{x} = \dfrac{{\log (2.3)}}{3}
\end{array}\]
As we have the value of \[\dfrac{1}{x}\] let us try to find the value of \[\dfrac{1}{y}\]
We have our second case as \[{\left( {0.23} \right)^y} = 1000\]
This can also be written as
\[{\left( {0.23} \right)^y} = {\left( {10} \right)^3}\]
Taking log in both the sides we get it as
\[\begin{array}{l}
\therefore \log {\left( {0.23} \right)^y} = \log {\left( {10} \right)^3}\\
\Rightarrow y\log \left( {0.23} \right) = 3\log 10\\
\Rightarrow y\log \left( {0.23} \right) = 3\\
\Rightarrow y = \dfrac{3}{{\log (0.23)}}\\
\Rightarrow \dfrac{1}{y} = \dfrac{{\log (0.23)}}{3}
\end{array}\]
As we also have the value of \[\dfrac{1}{y}\]
Let us put it in \[\dfrac{1}{x} - \dfrac{1}{y}\]
\[\begin{array}{l}
\therefore \dfrac{{\log (2.3)}}{3} - \dfrac{{\log (0.23)}}{3}\\
= \dfrac{{\log (2.3) - \log (0.23)}}{3}\\
= \dfrac{{\log \left( {\dfrac{{2.3}}{{0.23}}} \right)}}{3}\\
= \dfrac{{\log 10}}{3}\\
= \dfrac{1}{3}
\end{array}\]
Therefore \[\dfrac{1}{3}\] is the correct answer.
Note: The logarithms that have been used in this question are all \[{\log _{10}}\]. Also we could have just took the value of and x and y individually and then solve \[\dfrac{1}{x} - \dfrac{1}{y}\] by taking LCM but that will be log method and the chances of making mistakes were also high so better taking the value of \[\dfrac{1}{x}\& \dfrac{1}{y}\] individually and then just subtract them.
Complete step-by-step answer:
It is given that \[{\left( {2.3} \right)^x} = {\left( {0.23} \right)^y} = 1000\]
We will pair each one of them with 1000 to get different answers
Let us take the first case as \[{\left( {2.3} \right)^x} = 1000\]
Now this can be written as
\[{\left( {2.3} \right)^x} = {\left( {10} \right)^3}\]
Taking log in both the sides we get it as
\[\begin{array}{l}
\therefore \log {\left( {2.3} \right)^x} = \log {\left( {10} \right)^3}\\
\Rightarrow x\log \left( {2.3} \right) = 3\log 10\\
\Rightarrow x\log \left( {2.3} \right) = 3\\
\Rightarrow x = \dfrac{3}{{\log (2.3)}}\\
\Rightarrow \dfrac{1}{x} = \dfrac{{\log (2.3)}}{3}
\end{array}\]
As we have the value of \[\dfrac{1}{x}\] let us try to find the value of \[\dfrac{1}{y}\]
We have our second case as \[{\left( {0.23} \right)^y} = 1000\]
This can also be written as
\[{\left( {0.23} \right)^y} = {\left( {10} \right)^3}\]
Taking log in both the sides we get it as
\[\begin{array}{l}
\therefore \log {\left( {0.23} \right)^y} = \log {\left( {10} \right)^3}\\
\Rightarrow y\log \left( {0.23} \right) = 3\log 10\\
\Rightarrow y\log \left( {0.23} \right) = 3\\
\Rightarrow y = \dfrac{3}{{\log (0.23)}}\\
\Rightarrow \dfrac{1}{y} = \dfrac{{\log (0.23)}}{3}
\end{array}\]
As we also have the value of \[\dfrac{1}{y}\]
Let us put it in \[\dfrac{1}{x} - \dfrac{1}{y}\]
\[\begin{array}{l}
\therefore \dfrac{{\log (2.3)}}{3} - \dfrac{{\log (0.23)}}{3}\\
= \dfrac{{\log (2.3) - \log (0.23)}}{3}\\
= \dfrac{{\log \left( {\dfrac{{2.3}}{{0.23}}} \right)}}{3}\\
= \dfrac{{\log 10}}{3}\\
= \dfrac{1}{3}
\end{array}\]
Therefore \[\dfrac{1}{3}\] is the correct answer.
Note: The logarithms that have been used in this question are all \[{\log _{10}}\]. Also we could have just took the value of and x and y individually and then solve \[\dfrac{1}{x} - \dfrac{1}{y}\] by taking LCM but that will be log method and the chances of making mistakes were also high so better taking the value of \[\dfrac{1}{x}\& \dfrac{1}{y}\] individually and then just subtract them.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

