
Find the sum of the following series to n terms 1.4.7+4.7.10+7.10.13+....
Answer
604.2k+ views
Hint: In any series numbers follow a particular order. Before finding the sum of series, observe the given series to find that order to make simple calculations.
Complete step-by-step answer:
In the given series, the first term is 1.4.7, the second term is 4.7.10 and the third term is 7.10.13 and so on.
We have to find the general form of the series. Observing the given series,
The given series follows an order, such that ‘n’ th term is $${T_n} = (3n - 2) \cdot (3n + 1) \cdot (3n + 4)$$
$$ \Rightarrow {T_n} = 27{n^3} + 27{n^2} - 18n - 18$$
Now we got a generalized form for the given series, we need to find the sum of the series.
Taking summation over ‘n’ on both sides of $${T_n}$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3} + 27{n^2} - 18n - 8} } )$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3}) + \sum {(27{n^2})} - \sum {(18n)} - \sum {(8)} } } $$
$$ \Rightarrow \sum {{T_n} = 27\sum {({n^3}) + 27\sum {({n^2})} - 18\sum {(n)} - 8} } n$$
$$\left[ {\because \sum {{n^3}} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4};\sum {{n^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6};\sum {n = \dfrac{{n(n + 1)}}{2}} ;\sum {k = n \times k} } \right]$$
$$ \Rightarrow \sum {{T_n} = 27\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right) + 27\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) - 18\left( {\dfrac{{n(n + 1)}}{2}} \right)} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27n(n + 1)}}{4} + \dfrac{{27n(2n + 1)}}{7} - \dfrac{{18}}{2}} \right]} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
$\therefore $The sum of the given series is $$\sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
Note: First we found the general form for the given series. We used basic summation formulae to get the required solution. We applied those formulae and simplified the equation.
$$\sum {k = n \times k} $$, Where k is a constant.
Complete step-by-step answer:
In the given series, the first term is 1.4.7, the second term is 4.7.10 and the third term is 7.10.13 and so on.
We have to find the general form of the series. Observing the given series,
| (3n-2) | (3n+1) | (3n+4) | |
| n=1 | 1 | 4 | 7 |
| n=2 | 4 | 7 | 10 |
| n=3 | 7 | 10 | 13 |
The given series follows an order, such that ‘n’ th term is $${T_n} = (3n - 2) \cdot (3n + 1) \cdot (3n + 4)$$
$$ \Rightarrow {T_n} = 27{n^3} + 27{n^2} - 18n - 18$$
Now we got a generalized form for the given series, we need to find the sum of the series.
Taking summation over ‘n’ on both sides of $${T_n}$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3} + 27{n^2} - 18n - 8} } )$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3}) + \sum {(27{n^2})} - \sum {(18n)} - \sum {(8)} } } $$
$$ \Rightarrow \sum {{T_n} = 27\sum {({n^3}) + 27\sum {({n^2})} - 18\sum {(n)} - 8} } n$$
$$\left[ {\because \sum {{n^3}} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4};\sum {{n^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6};\sum {n = \dfrac{{n(n + 1)}}{2}} ;\sum {k = n \times k} } \right]$$
$$ \Rightarrow \sum {{T_n} = 27\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right) + 27\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) - 18\left( {\dfrac{{n(n + 1)}}{2}} \right)} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27n(n + 1)}}{4} + \dfrac{{27n(2n + 1)}}{7} - \dfrac{{18}}{2}} \right]} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
$\therefore $The sum of the given series is $$\sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
Note: First we found the general form for the given series. We used basic summation formulae to get the required solution. We applied those formulae and simplified the equation.
$$\sum {k = n \times k} $$, Where k is a constant.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

