Answer
Verified
484.5k+ views
Hint: In order to solve this question we will use a technique called logarithmic differentiation. Also we have to use product rules. Thus, we get our desired answer.
Complete step-by-step answer:
Now given function is,
${\left( {\cos x} \right)^x}$
And we have to find its derivative.
And we will find its derivative by using a technique called logarithmic differentiation.
Logarithmic differentiation- In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of function $f$,
$
{\left( {\ln f} \right)^\prime } = \dfrac{{f'}}{f} \\
\Rightarrow f' = f \times {\left( {\ln f} \right)^\prime } \\
$
Now let $y = {\left( {\cos x} \right)^x}$
Now taking log both sides we get,
$\ln \left( y \right) = \ln {\left( {\cos x} \right)^x}$
Or we can write the above equation as,
$\ln \left( y \right) = x\ln \left( {\cos x} \right)$ (By law of logarithms.)
Now differentiate both sides we get,
$\dfrac{{d\left( {\ln \left( y \right)} \right)}}{{dx}} = \dfrac{{d\left( {x\ln \left( {\cos x} \right)} \right)}}{{dx}}$
Now applying the product rule we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{{d\left( {\ln \left( y \right)} \right)}}{{dy}} = \ln \left( {\cos x} \right) \times \dfrac{{dx}}{{dx}} + x\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}}$ -----(1)
Now we know that
$\dfrac{{d\left( {\ln \left( y \right)} \right)}}{d} = \dfrac{1}{y}$ ------(2)
Now put (2) in (1) we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{1}{y} = \ln \left( {\cos x} \right) + x\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}}$ ----(3) $\left( {\because \dfrac{{dx}}{{dx}} = 1} \right)$
Also,
$
\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}} = \dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{d\left( {\cos x} \right)}} \times \dfrac{{d\left( {\cos x} \right)}}{{dx}} \\
= \dfrac{1}{{\cos x}} \times - \sin x \\
$
$ = \dfrac{{ - \sin x}}{{\cos x}}$ -----(4)
Putting the value of (4) in (3) we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{1}{y} = \ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}$
Or $\dfrac{{dy}}{{dx}} = y\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$
Or $\dfrac{{dy}}{{dx}} = {\left( {\cos x} \right)^x}\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$
Thus, the required answer is ${\left( {\cos x} \right)^x}\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$ .
Note: Whenever we face such types of questions the key concept is that take logarithm function both sides and then solve the equation formed. Like, in this question we simply assume a variable which is equal to the given function then we take logarithmic function both sides and then we solve the equation formed and thus we get our answer.
Complete step-by-step answer:
Now given function is,
${\left( {\cos x} \right)^x}$
And we have to find its derivative.
And we will find its derivative by using a technique called logarithmic differentiation.
Logarithmic differentiation- In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of function $f$,
$
{\left( {\ln f} \right)^\prime } = \dfrac{{f'}}{f} \\
\Rightarrow f' = f \times {\left( {\ln f} \right)^\prime } \\
$
Now let $y = {\left( {\cos x} \right)^x}$
Now taking log both sides we get,
$\ln \left( y \right) = \ln {\left( {\cos x} \right)^x}$
Or we can write the above equation as,
$\ln \left( y \right) = x\ln \left( {\cos x} \right)$ (By law of logarithms.)
Now differentiate both sides we get,
$\dfrac{{d\left( {\ln \left( y \right)} \right)}}{{dx}} = \dfrac{{d\left( {x\ln \left( {\cos x} \right)} \right)}}{{dx}}$
Now applying the product rule we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{{d\left( {\ln \left( y \right)} \right)}}{{dy}} = \ln \left( {\cos x} \right) \times \dfrac{{dx}}{{dx}} + x\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}}$ -----(1)
Now we know that
$\dfrac{{d\left( {\ln \left( y \right)} \right)}}{d} = \dfrac{1}{y}$ ------(2)
Now put (2) in (1) we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{1}{y} = \ln \left( {\cos x} \right) + x\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}}$ ----(3) $\left( {\because \dfrac{{dx}}{{dx}} = 1} \right)$
Also,
$
\dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{dx}} = \dfrac{{d\left( {\ln \left( {\cos x} \right)} \right)}}{{d\left( {\cos x} \right)}} \times \dfrac{{d\left( {\cos x} \right)}}{{dx}} \\
= \dfrac{1}{{\cos x}} \times - \sin x \\
$
$ = \dfrac{{ - \sin x}}{{\cos x}}$ -----(4)
Putting the value of (4) in (3) we get,
$\dfrac{{dy}}{{dx}} \times \dfrac{1}{y} = \ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}$
Or $\dfrac{{dy}}{{dx}} = y\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$
Or $\dfrac{{dy}}{{dx}} = {\left( {\cos x} \right)^x}\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$
Thus, the required answer is ${\left( {\cos x} \right)^x}\left( {\ln \left( {\cos x} \right) - \dfrac{{x\sin x}}{{\cos x}}} \right)$ .
Note: Whenever we face such types of questions the key concept is that take logarithm function both sides and then solve the equation formed. Like, in this question we simply assume a variable which is equal to the given function then we take logarithmic function both sides and then we solve the equation formed and thus we get our answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
Discuss the main reasons for poverty in India
What is Commercial Farming ? What are its types ? Explain them with Examples
Write an application to the principal requesting five class 10 english CBSE