Answer

Verified

331k+ views

Hint: Use the first principle for finding the first derivative of any function which says that first derivative of any function \[f\left( x \right)\] can be found by using the formula \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\] and simplifying it to get the derivative.

Complete step-by-step answer:

We have the function \[y=\cos x\]. We have to find its first derivative using the first principle.

First principle says that first derivative of the function \[y=f\left( x \right)\] can be found out by evaluating the value of \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\].

Substituting \[f\left( x \right)=\cos x\], we have the first derivative of the function as \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+h \right)-\cos \left( x \right)}{h}\].

We know that \[\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{b-a}{2} \right)\].

Substituting \[a=x+h,b=x\] in the above equation, we have \[\cos \left( x+h \right)-\cos \left( x \right)=2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)\].

Thus, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+h \right)-\cos \left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)}{h}\].

Simplifying the above expression, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{-h}{2} \right)}{\dfrac{h}{2}}\].

We know that \[\sin \left( -\theta \right)=-\sin \theta \].

Thus, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{-h}{2} \right)}{\dfrac{h}{2}}=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\].

We know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{x}{2} \right)}{\dfrac{x}{2}}=1\].

Thus, we have \[\dfrac{dy}{dx}=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}=-\underset{h\to 0}{\mathop{\lim }}\,\sin \left( x+\dfrac{h}{2} \right)\times 1\].

Applying the limit, we have \[\dfrac{dy}{dx}=-\underset{h\to 0}{\mathop{\lim }}\,\sin \left( x+\dfrac{h}{2} \right)\times 1=-\sin \left( x+0 \right)=-\sin x\].

Hence, the first derivative of the function \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\].

Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).

We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

Note: The instantaneous rate of change of a function with respect to the dependent variable is called the derivative of the function. The first derivative of any function represents the slope of the curve of that function. One must be careful while using limits to find the value of derivatives. Directly applying the limits will give an incorrect answer.

Complete step-by-step answer:

We have the function \[y=\cos x\]. We have to find its first derivative using the first principle.

First principle says that first derivative of the function \[y=f\left( x \right)\] can be found out by evaluating the value of \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\].

Substituting \[f\left( x \right)=\cos x\], we have the first derivative of the function as \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+h \right)-\cos \left( x \right)}{h}\].

We know that \[\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{b-a}{2} \right)\].

Substituting \[a=x+h,b=x\] in the above equation, we have \[\cos \left( x+h \right)-\cos \left( x \right)=2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)\].

Thus, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+h \right)-\cos \left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)}{h}\].

Simplifying the above expression, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x+h+x}{2} \right)\sin \left( \dfrac{x-\left( x+h \right)}{2} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{-h}{2} \right)}{\dfrac{h}{2}}\].

We know that \[\sin \left( -\theta \right)=-\sin \theta \].

Thus, we have \[\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{-h}{2} \right)}{\dfrac{h}{2}}=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\].

We know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{x}{2} \right)}{\dfrac{x}{2}}=1\].

Thus, we have \[\dfrac{dy}{dx}=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+\dfrac{h}{2} \right)\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}=-\underset{h\to 0}{\mathop{\lim }}\,\sin \left( x+\dfrac{h}{2} \right)\times 1\].

Applying the limit, we have \[\dfrac{dy}{dx}=-\underset{h\to 0}{\mathop{\lim }}\,\sin \left( x+\dfrac{h}{2} \right)\times 1=-\sin \left( x+0 \right)=-\sin x\].

Hence, the first derivative of the function \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\].

Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).

We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

Note: The instantaneous rate of change of a function with respect to the dependent variable is called the derivative of the function. The first derivative of any function represents the slope of the curve of that function. One must be careful while using limits to find the value of derivatives. Directly applying the limits will give an incorrect answer.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

List out three methods of soil conservation

Change the following sentences into negative and interrogative class 10 english CBSE

Mention the importance of the Himalayas class 10 social science CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE