Find the coordinates of the circumcentre of the triangle whose vertices are $\left( {8,6} \right),\left( {8, - 2} \right)$ and\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]$\left( {2, - 2} \right)$. Also, find its circum-radius.
Answer
Verified
507.6k+ views
Hint: A circumcentre of a triangle is equidistant from all the vertices of the triangle.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE