ABCD is a cyclic quadrilateral such that 12 tan(A) – 5 = 0 and 5 cos(B) + 3 =0. Find the value of 39(cos(C)+tan(D)).
(a). -16
(b). 16
(c). -14
(d). 14
Answer
Verified
504.6k+ views
Hint: The sum of opposite angles of the cyclic quadrilateral is 180 degrees. Use this to find cos(C) and tan(D). Then, we can find the value of the required expression.
Complete step-by-step answer:
Given that ABCD is a cyclic quadrilateral. We know that the opposite angles of a cyclic quadrilateral add up to 180 degrees. The pair of opposite angles of the cyclic quadrilateral ABCD are A and C and B and D. Hence, the relation between them is as follows:
\[A + C = 180\]
\[C = 180 - A.........(1)\]
\[B + D = 180\]
\[D = 180 - B.........(2)\]
We can substitute equation (1) and equation (2) in the given expressions.
\[12\tan A - 5 = 0\]
\[\tan A = \dfrac{5}{{12}}\]
\[\tan (180 - C) = \dfrac{5}{{12}}\]
We know that the value of \[\tan (180 - x)\] is -tan(x).
\[\tan C = - \dfrac{5}{{12}}...........(3)\]
The second expression can be written as:
\[5\cos B + 3 = 0\]
\[\cos B = - \dfrac{3}{5}\]
\[\cos (180 - D) = - \dfrac{3}{5}\]
We know that \[\cos (180 - x)\] is -cos(x), then, we have:
\[\cos D = \dfrac{3}{5}..............(4)\]
From equation (3), let us find out cos(C).
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]. Using this in the above equation, we get:
\[{\sec ^2}C = 1 + {\tan ^2}C\]
\[{\sec ^2}C = 1 + {\left( { - \dfrac{5}{{12}}} \right)^2}\]
Simplifying the square, we get:
\[{\sec ^2}C = 1 + \dfrac{{25}}{{144}}\]
\[{\sec ^2}C = \dfrac{{144 + 25}}{{144}}\]
\[{\sec ^2}C = \dfrac{{169}}{{144}}\]
We know that 169 is square of 13 and 144 is square of 12.
\[\sec C = \pm \dfrac{{13}}{{12}}\]
Angle C lies in the second quadrant since tan(C) is negative. Hence, sec(C) is also negative.
\[\sec C = - \dfrac{{13}}{{12}}\]
We know that \[\cos x = \dfrac{1}{{\sec x}}\], hence we have:
\[\cos C = - \dfrac{{12}}{{13}}............(5)\]
From equation (4), let us find out tan(D).
We know that, \[\sec x = \dfrac{1}{{\cos x}}\], hence, we have:
\[\sec D = \dfrac{5}{3}\]
We know that \[{\tan ^2}x = {\sec ^2}x - 1\]. Using this in the above equation, we get:
\[{\tan ^2}D = {\left( {\dfrac{5}{3}} \right)^2} - 1\]
\[{\tan ^2}D = \dfrac{{25}}{9} - 1\]
\[{\tan ^2}D = \dfrac{{25 - 9}}{9}\]
\[{\tan ^2}D = \dfrac{{16}}{9}\]
We know that 16 is square of 4 and 9 is square of 3, hence we have:
\[\tan D = \pm \dfrac{4}{3}\]
Angle D lies in the first quadrant since cos(D) is positive, hence, tan(D) is also positive.
\[\tan D = \dfrac{4}{3}...........(6)\]
We have to find the value of \[39(\cos C + \tan D)\], using equation (5) and equation (6), we get:
\[39(\cos C + \tan D) = 39\left( { - \dfrac{{12}}{{13}} + \dfrac{4}{3}} \right)\]
\[39(\cos C + \tan D) = 39\left( {\dfrac{{ - 36 + 52}}{{39}}} \right)\]
\[39(\cos C + \tan D) = 16\]
Hence, the correct answer is option (b).
Note: If you do not write the plus and minus sign correctly when taking square roots, you might get option (a) as the correct answer, which is wrong. Use the quadrants to check if the square root value is positive or negative.
Complete step-by-step answer:
Given that ABCD is a cyclic quadrilateral. We know that the opposite angles of a cyclic quadrilateral add up to 180 degrees. The pair of opposite angles of the cyclic quadrilateral ABCD are A and C and B and D. Hence, the relation between them is as follows:
\[A + C = 180\]
\[C = 180 - A.........(1)\]
\[B + D = 180\]
\[D = 180 - B.........(2)\]
We can substitute equation (1) and equation (2) in the given expressions.
\[12\tan A - 5 = 0\]
\[\tan A = \dfrac{5}{{12}}\]
\[\tan (180 - C) = \dfrac{5}{{12}}\]
We know that the value of \[\tan (180 - x)\] is -tan(x).
\[\tan C = - \dfrac{5}{{12}}...........(3)\]
The second expression can be written as:
\[5\cos B + 3 = 0\]
\[\cos B = - \dfrac{3}{5}\]
\[\cos (180 - D) = - \dfrac{3}{5}\]
We know that \[\cos (180 - x)\] is -cos(x), then, we have:
\[\cos D = \dfrac{3}{5}..............(4)\]
From equation (3), let us find out cos(C).
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]. Using this in the above equation, we get:
\[{\sec ^2}C = 1 + {\tan ^2}C\]
\[{\sec ^2}C = 1 + {\left( { - \dfrac{5}{{12}}} \right)^2}\]
Simplifying the square, we get:
\[{\sec ^2}C = 1 + \dfrac{{25}}{{144}}\]
\[{\sec ^2}C = \dfrac{{144 + 25}}{{144}}\]
\[{\sec ^2}C = \dfrac{{169}}{{144}}\]
We know that 169 is square of 13 and 144 is square of 12.
\[\sec C = \pm \dfrac{{13}}{{12}}\]
Angle C lies in the second quadrant since tan(C) is negative. Hence, sec(C) is also negative.
\[\sec C = - \dfrac{{13}}{{12}}\]
We know that \[\cos x = \dfrac{1}{{\sec x}}\], hence we have:
\[\cos C = - \dfrac{{12}}{{13}}............(5)\]
From equation (4), let us find out tan(D).
We know that, \[\sec x = \dfrac{1}{{\cos x}}\], hence, we have:
\[\sec D = \dfrac{5}{3}\]
We know that \[{\tan ^2}x = {\sec ^2}x - 1\]. Using this in the above equation, we get:
\[{\tan ^2}D = {\left( {\dfrac{5}{3}} \right)^2} - 1\]
\[{\tan ^2}D = \dfrac{{25}}{9} - 1\]
\[{\tan ^2}D = \dfrac{{25 - 9}}{9}\]
\[{\tan ^2}D = \dfrac{{16}}{9}\]
We know that 16 is square of 4 and 9 is square of 3, hence we have:
\[\tan D = \pm \dfrac{4}{3}\]
Angle D lies in the first quadrant since cos(D) is positive, hence, tan(D) is also positive.
\[\tan D = \dfrac{4}{3}...........(6)\]
We have to find the value of \[39(\cos C + \tan D)\], using equation (5) and equation (6), we get:
\[39(\cos C + \tan D) = 39\left( { - \dfrac{{12}}{{13}} + \dfrac{4}{3}} \right)\]
\[39(\cos C + \tan D) = 39\left( {\dfrac{{ - 36 + 52}}{{39}}} \right)\]
\[39(\cos C + \tan D) = 16\]
Hence, the correct answer is option (b).
Note: If you do not write the plus and minus sign correctly when taking square roots, you might get option (a) as the correct answer, which is wrong. Use the quadrants to check if the square root value is positive or negative.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE