A fraction becomes $\dfrac{1}{3}$, if 1 is subtracted from both its numerator and denominator. If 3 is added to both the numerator and the denominator, it becomes $\dfrac{1}{2}$. Find the fraction.
Answer
382.5k+ views
Hint- Here, we will be assuming the original fraction which will consist of two unknowns i.e., numerator and denominator. According to the problem, we will obtain two equations in two unknowns and then will use elimination method.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which planet is known as the red planet aMercury bMars class 6 social science CBSE

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
