Answer
Verified
492k+ views
Hint- Here, we will be assuming the original fraction which will consist of two unknowns i.e., numerator and denominator. According to the problem, we will obtain two equations in two unknowns and then will use elimination method.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths