NCERT Solutions For Class 11 Physics Chapter 6 Work, Energy And Power in Hindi - 2025-26
Download the Class 11 Physics NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 11, you have reached the right platform. The NCERT Solutions for Class 11 Physics in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 11 Physics in Hindi from our website at absolutely free of cost.
Table of ContentNCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
Note:➤Unlock your dream college possibilities with our NEET College Predictor!
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
NCERT Solutions for Class 11 Physics Chapter 6 Work, Energy and Power in Hindi
1. किसी वस्तु पर किसी बल द्वारा किए गए कार्य का चिह्न समझना महत्त्वपूर्ण है। सावधानीपूर्वक बताइए कि निम्नलिखित राशियाँ धनात्मक हैं या ऋणात्मक –
(a) किसी व्यक्ति द्वारा किसी कुएँ में से रस्सी से बँधी बाल्टी को रस्सी द्वारा बाहर निकालने में किया गया कार्य।
उत्तर: चूँकि मनुष्य द्वारा लगाया गया बल तथा बाल्टी का विस्थापन दोनों ऊपर की ओर दिष्ट हैं; अत: कार्य धनात्मक होगा।
(b) उपर्युक्त स्थिति में गुरुत्वीय बल द्वारा किया गया कार्य।
उत्तर: चूँकि गुरुत्वीय बल नीचे की ओर दिष्ट है तथा बाल्टी का विस्थापन ऊपर की ओर है; अतः गुरुत्वीय बल द्वारा किया गया कार्य ऋणात्मक होगा।
(c) किसी आनत तल पर फिसलती हुई किसी वस्तु पर घर्षण द्वारा किया गया कार्य।
उत्तर: चूँकि घर्षण बेल सदैव वस्तु के विस्थापन की दिशा के विपरीत दिष्ट होता है; अत: घर्षण बल द्वारा किया गया कार्य ऋणात्मक होगा।
(d) किसी खुरदरे क्षैतिज तल पर एकसमान वेग से गतिमान किसी वस्तु पर लगाए गए बल द्वारा किया गया कार्य।
उत्तर: वस्तु पर लगाया गया बल घर्षण के विपरीत अर्थात् वस्तु की गति की दिशा में है; अत: इस बल द्वारा कृत कार्य धनात्मक होगा।
(e) किसी दोलायमान लोलक को विरामावस्था में लाने के लिए वायु के प्रतिरोधी बल द्वारा किया गया कार्य।
उत्तर: वायु का प्रतिरोधी बल सदैव गति के विपरीत दिष्ट होता है; अतः कार्य ऋणात्मक होगा।
2. \[2\;{\text{kg}}\] द्रव्यमान की कोई वस्तु जो आरम्भ में विरामावस्था में है, \[7\;{\text{N}}\] के किसी क्षैतिज बल के प्रभाव से एक मेज पर गति करती है। मेज का गतिज-घर्षण गुणांक 0:1 है। निम्नलिखित का परिकलन कीजिए और अपने परिणामों की व्याख्या कीजिए –
हल- दिया है : $F = 7N,m = 2kg,u = 0,{\mu _k} = 0.1$
∵ गति क्षैतिज मेज पर हो रही है,
∴ गतिज घर्षण बल ${\mu _k}\;{\text{N}} = {\mu _k}\;{\text{mg}} = 0.1 \times 2\;\;{\text{kg}} \times 10\;{\text{m}}{{\text{s}}^{{\text{ - 2}}}} = 2\;{\text{N}}$
∴ पिण्ड पर गति की दिशा में नेट बल
\[\mid {F_1} = F - {\mu _k}\;{\text{N}} = 7\;{\text{N}} - 2\;{\text{N}} = 5\,{\text{N}}\]
सूत्र $F = ma$ से,
वस्तु का त्वरण $a = \dfrac{{{F_1}}}{m} = \dfrac{{5\;{\text{N}}}}{{2\;{\text{kg}}}} = 2.5\;{\text{m}}{{\text{s}}^{{\text{ - 2}}}}$
$\therefore 10\;{\text{s}}$ में तय दूरी,
$s = ut + \dfrac{1}{2}a{t^2}$
$= 0 \times 10\;{\text{s}} + \dfrac{1}{2}\left( {2.5\;\;{\text{m\;}}{{\text{s}}^{{\text{ - 2}}}}} \right) \times {(10)^2}$
$= 125\;{\text{m}}$
(a) लगाए गए बल द्वारा $10\;{\text{s}}$ में किया गया कार्य।
उत्तर: लगाए गए बल द्वारा $10\;{\text{s}}$ में कृत कार्य
${W_1} = F \cdot \operatorname{scos} {0^^\circ }$
$= 7\;{\text{N}} \times 125\;{\text{m}}$
$= + 875\;{\text{J}}$
∵ विस्थापन बाह्य बल की दिशा में है; अत: यह कार्य धनात्मक है।
(b) घर्षण द्वारा $10\;{\text{s}}$ में किया गया कार्य।
उत्तर: घर्षण बल द्वारा $10\;{\text{s}}$ में कृत कार्य
${W_2} = - \left( {{\mu _k}\;{\text{N}}} \right) \cdot s$
$= - 2\;{\text{N}} \times 125\;{\text{m}}$
$= - 250\;{\text{J}}$
∵ विस्थापन घर्षण बल के विरुद्ध है; अत: यह कार्य ऋणात्मक है।
(c) वस्तु पर कुल बल द्वारा $10\;{\text{s}}$ में किया गया कार्य।
उत्तर: कुल बल द्वारा किया गया कार्य
W=कुल बल कुल बल विस्थापन
$= + 5\;{\text{N}} \times 125\;{\text{m}}$
$= + 625\;{\text{J}}$
(d) वस्तु की गतिज ऊर्जा में $10\;{\text{s}}$ में परिवर्तन।
उत्तर: कार्य-ऊर्जा प्रमेय से,
गतिज ऊर्जा में परिवर्तन $\Delta {\text{K}} = $ कुल बल द्वारा कृत कार्य $ = + 625\;\;{\text{J}}$
व्याख्या – गतिज ऊर्जा में कुल-परिवर्तन ($625\;\;{\text{J}}$) बाह्य बल द्वारा किए गए कार्य ($875\;\;{\text{J}}$) से कम है। इसका कारण यह है कि बाह्य बल के द्वारा किए गए कार्य का कुछ भाग घर्षण के प्रभाव को समाप्त करने में व्यय होता है।
3.चित्र में कुछ एकविमीय स्थितिज ऊर्जा-फलनों के उदाहरण दिए गए हैं। कण की कुल ऊर्जा कोटि-अक्ष पर क्रॉस द्वारा निर्देशित की गई है। प्रत्येक स्थिति में, कोई ऐसे क्षेत्र बंताइए, यदि कोई हैं तो जिनमें दी गई ऊर्जा के लिए, कण को नहीं पाया जा सकता। इसके अतिरिक्त, कण की कुल न्यूनतम ऊर्जा भी निर्देशित कीजिए। कुछ ऐसे भौतिक सन्दर्भो के विषय में सोचिए जिनके लिए ये स्थितिज ऊर्जा आकृतियाँ प्रासंगिक हों।
उत्तर:
${\text{ K}}{\text{.E}}{\text{. + P}}{\text{.E}}{\text{. = E}}$ (constant)
$\therefore {\text{K}}.{\text{E}}. = {\text{E}} - {\text{P}}.{\text{E}}$
(a)
चित्र: (a) स्थितिज ऊर्जा - दूरी वक्र
इस ग्राफ में \[{\text{x < a}}\] के लिए स्थितिज ऊर्जा वक्र, दूरी अक्ष के साथ सम्पाती है (\[{\text{P}}{\text{.E}}{\text{. = O}}\]) जबकि \[{\text{x > a}}\] के लिए स्थितिज ऊर्जा कुल ऊर्जा से अधिक है; अतः गतिज ऊर्जा ऋणात्मक हो जाएगी जो कि असम्भव है।
अतः कण \[{\text{x > a}}\] क्षेत्र में नहीं पाया जा सकता।
(b)
चित्र: (b) स्थितिज ऊर्जा - दूरी वक्र
इस ग्राफ से स्पष्ट है कि प्रत्येक स्थान पर ${\text{P}}{\text{.E}}{\text{. > E}}$
अत: गतिज ऊर्जा ऋणात्मक होगी जो कि असम्भव है; अत: कण को कहीं भी नहीं पाया जा सकता।
(c)
चित्र: (c) स्थितिज ऊर्जा - दूरी वक्र
$0 < x < a$ तथा $b < x$ क्षेत्रों में
${\text{P}}{\text{.E}}{\text{. > E}}$
अत: गतिज ऊर्जा ऋणात्मक होगी; अत: कण को इन क्षेत्रों चित्र 6.1(c) पीं पाया जा सकता।
(d)
चित्र: (d) स्थितिज ऊर्जा - दूरी वक्र
$-\frac{b}{2}<x<-\frac{a}{2}$
तथा $\dfrac{a}{2} < x < \dfrac{b}{2}$ क्षेत्रों में ${\text{P}}{\text{.E}}{\text{. > E}}$; अत: गतिज ऊर्जा ऋणात्मक होगी इसलिए कण इन क्षेत्रों में $ - \dfrac{b}{2} - \dfrac{a}{2}\left| { - V_1^2\dfrac{b}{2}} \right|$ नहीं पाया जा सकता।
4.रेखीय सरल आवर्त गति कर रहे किसी कण का (d) स्थितिज ऊर्जा फलन \[v\left( x \right) = \dfrac{1}{2}{\text{ }}k{x^2}\] है, जहाँ \[k\] दोलक का बल नियतांक है। \[k = 0.5{\text{ N}}{{\text{m}}^{ - 1}}\;\] के लिए \[v{\text{ }}\left( x \right)\] व $x$ के मध्य ग्राफ चित्र में दिखाया गया है। यह दिखाइए कि इस विभव के अन्तर्गत गतिमान कुल 1J ऊर्जा वाले कण को अवश्य ही ‘वापस आना चाहिए जब यह \[x = \; \pm {\text{ }}2{\text{ m}}\] पर पहुँचता है।
चित्र: 6.2 रेखीय सरल आवर्त गति कर रहे किसी कण का स्थितिज ऊर्जा x के मध्य ग्राफ
उत्तर:सरल आवर्त गति करते कण की कुल ऊजो
$E = K.E. + P \cdot E$
$ = \dfrac{1}{2}m{v^2} + \dfrac{1}{2}k{x^2}$
कण उस स्थिति $x = {x_m}$ से लौटना प्रारम्भ करेगा जबकि उसकी गतिज ऊर्जा शून्य होगी। अत: $\dfrac{1}{2}m{v^2} = 0$व $x = {x_m}$ रखने पर
दिया है : $E = 1\;{\text{J}}$ तथा $k = 0.5\;{\text{N}}{{\text{m}}^{{\text{ - 1}}}}$
$\therefore 1 = \dfrac{1}{2} \times 0.5 \times x_m^2$
$\Rightarrow x_m^2 = \dfrac{2}{{0.5}} = 4$
$\therefore {x_m} = \pm 2\;{\text{m}}$
अत: कण जब \[{x_m} = \pm 2\;m\] पर पहुँचता है तो वहीं से वापस लौटना प्रारम्भ करता है।
5. निम्नलिखित का उत्तर दीजिए –
(a) किसी रॉकटे का बाह्य आवरण उड़ान के दौरान घर्षण के कारण जल जाता है। जलने के लिए आवश्यक ऊष्मीय ऊर्जा किसके व्यय पर प्राप्त की गई रॉकेट या वातावरण?
उत्तर: बाह्य आवरण के जलने के लिए आवश्यक ऊष्मीय ऊर्जा रॉकेट की यान्त्रिक ऊर्जा
(K.E. + P.E.) से प्राप्त की गई।
(b) धूमकेतु सूर्य के चारों ओर बहुत ही दीर्घवृत्तीय कक्षाओं में घूमते हैं। साधारणतया धूमकेतु पर सूर्य का गुरुत्वीय बल धूमकेतु के लम्बवत नहीं होता है। फिर भी धूमकेतु की सम्पूर्ण कक्षा में गुरुत्वीय बल द्वारा किया गया कार्य शून्य होता है। क्यों?
उत्तर: धूमकेतु पर सूर्य द्वारा आरोपित गुरुत्वाकर्षण बल एक संरक्षी बल है। संरक्षी बल के द्वारा बन्द पथ में गति करने वाले पिण्ड पर किया गया नेट कार्य शून्य होता है; अत: धूमकेतु की सम्पूर्ण कक्षा में सूर्य ‘क गुरुत्वाकर्षण बल द्वारा कृत कार्य शून्य होगा।
(c) पृथ्वी के चारों ओर बहुत ही क्षीण वायुमण्डल में घूमते हुए किसी कृत्रिम उपग्रह की ऊर्जा धीरे-धीरे वायुमण्डलीय प्रतिरोध (चाहे यह कितना ही कम क्यों न हो) के विरुद्ध क्षय के कारण कम होती जाती है फिर भी जैसे-जैसे कृत्रिम उपग्रह पृथ्वी के समीप आता है तो उसकी चाल में लगातार वृद्धि क्यों होती है?
उत्तर: जैसे-जैसे उपग्रह पृथ्वी के समीप आता है वैसे-वैसे उसकी गुरुत्वीय स्थितिज ऊर्जा घटती है, ऊर्जा संरक्षण के अनुसार गतिज ऊर्जा बढ़ती जाती है; अत: उसकी चाल बढ़ती जाती है। कुल ऊर्जा का कुछ भाग घर्षण बल के विरुद्ध कार्य करने में खर्च हो जाती है।
(d) चित्र-6.3 (i) में एक व्यक्ति अपने हाथों में \[15{\text{ kg}}\] का कोई द्रव्यमान लेकर \[2{\text{ m}}\] चलता है। चित्र-6.3 (ii) में वह उतनी ही दूरी अपने पीछे रस्सी को खींचते हुए चलता है। रस्सी घिरनी पर चढ़ी हुई है और उसके दूसरे सिरे पर \[15{\text{ kg}}\] का द्रव्यमान लटका हुआ है। परिकलन कीजिए कि किस स्थिति में किया गया कार्य अधिक है?
चित्र: विभिन्न स्थितिया (i) तथा (ii)
उत्तर: (i) इस दशा में व्यक्तिद्रव्यमान को उठाए रखने के लिए भार के विरुद्ध ऊपर की ओर बल लगाता है जबकि उसका विस्थापन क्षैतिज दिशा में है $\left( {\theta = {{90}^^\circ }} \right)$
∴ मनुष्य द्वारा कृत कार्य $N = Fd\cos {90^^\circ } = 0$
(ii) इस दशा में पुली मनुष्य द्वारा लगाए गए क्षैतिज बल की दिशा को ऊर्ध्वाधर कर देती है तथा द्रव्यमान का विस्थापन भी ऊपर की ओर है \[\left( {\theta {\text{ }} = {\text{ }}0^\circ } \right)\]
∴ मनुष्य द्वारा कृत कार्य
$W{\text{ }} = {\text{ }}m{\text{ }}g{\text{ }}h{\text{ }}cos{\text{ }}0^\circ {\text{ }}$
$= {\text{ }}15{\text{ kg }} \times {\text{ }}10{\text{ m}}{{\text{s}}^{{\text{ - 2}}}}\; \times {\text{ }}2{\text{ m }}$
$= {\text{ }}300{\text{ J}}$
अतः दशा (ii) में अधिक कार्य किया जाएगा।
6.सही विकल्प को रेखांकित कीजिए –
(a) जब कोई संरक्षी बल किसी वस्तु पर धनात्मक कार्य करता है तो वस्तु की स्थितिज ऊर्जा बढ़ती है/घटती है/अपरिवर्ती रहती है।
उत्तर: घटती है, क्योंकि संरक्षी बल के विरुद्ध किया गया कार्य (बाह्य बल द्वारा धनात्मक कार्य) ही स्थितिज ऊर्जा के रूप में संचित होता है।
(b) किसी वस्तु द्वारा घर्षण के विरुद्ध किए गए कार्यका परिणाम हमेशा इसकी गतिज/स्थितिज ऊर्जा में क्षय होता है।
उत्तर: गतिज ऊर्जा, क्योंकि घर्षण के विरुद्ध कार्य तभी होता है जबकि गति हो रही हो।
(c) किसी बहुकण निकाय के कुल संवेग-परिवर्तन की दर निकाय के बाह्य बल/ आन्तरिक बलों के जोड़ के अनुक्रमानुपाती होती है।
उत्तर: बाह्य बल, क्योंकि बहुकण निकाय में आन्तरिक बलों का परिणामी शून्य होता है तथा आन्तरिक बल संवेग परिवर्तन के लिए उत्तरदायी नहीं होते।
(d) किन्हीं दो पिण्डों के अप्रत्यास्थ संघट्ट में वे राशियाँ, जो संघट्ट के बाद नहीं बदलती हैं; निकाय की कुल गतिज ऊर्जा/कुल रेखीय संवेग/कुल ऊर्जा हैं।
उत्तर: कुल रेखीय संवेग
7.बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर के लिए कारण भी दीजिए –
(a) किन्हीं दो पिण्डों के प्रत्यास्थ संघट्ट में, प्रत्येक पिण्ड का संवेग व ऊर्जा संरक्षित रहती है।
उत्तर: असत्य, पूर्ण निकाय का संवेग व गतिज ऊर्जा संरक्षित रहते हैं।
(b) किसी पिण्ड पर चाहे कोई भी आन्तरिक व बाह्य बल क्यों न लग रहा हो, निकाय की कुल ऊर्जा सर्वदा संरक्षित रहती है।
उत्तर: सत्य, निकाय की कुल ऊर्जा सदैव संरक्षित रहती है।
(c) प्रकृति में प्रत्येक बल के लिए किसी बन्द लूप में, किसी पिण्ड की गति में किया गया कार्य शून्य होता है।
उत्तर: असत्य, केवल संरक्षी बलों के लिए, बन्द लूप में गति के दौरान पिण्ड पर किया गया कार्य शून्य होता है।
(d) किसी अप्रत्यास्थ संघट्ट में, किसी निकाय की अन्तिम गतिज ऊर्जा, आरम्भिक गतिज ऊर्जा से हमेशा कम होती है।
उत्तर: सत्य, क्योंकि अप्रत्यास्थ संघट्ट में गतिज ऊर्जा की सदैव हानि होती है।
8.निम्नलिखित का उत्तर ध्यानपूर्वक, कारण सहित दीजिए –
(a) किन्हीं दो बिलियर्ड-गेंदों के प्रत्यास्थ संघट्ट में, क्या गेंदों के संघट्ट की अल्पावधि में (जब वे सम्पर्क में होती हैं) कुल गतिज ऊर्जा संरक्षित रहती है?
उत्तर: नहीं, संघट्ट काल के दौरान गेंदें संपीडित हो जाती हैं; अत: गतिज ऊर्जा, गेंदों की स्थितिज ऊर्जा में बदल जाती है।
(b) दो गेंदों के किसी प्रत्यास्थ संघट्ट की लघु अवधि में क्या कुल रेखीय संवेग संरक्षित रहता
उत्तर: हाँ, संवेग संरक्षित रहता है।
(c) किसी अप्रत्यास्थ संघट्ट के लिए (a) व (b) के लिए आपके उत्तर क्या हैं?
उत्तर: उत्तर उपर्युक्त ही रहेंगे।
(d) यदि दो बिलियर्ड-गेंदों की स्थितिज ऊर्जा केवल उनके केन्द्रों के मध्य, पृथक्करण-दूरी पर निर्भर करती है तो संघट्ट प्रत्यास्थ होगा या अप्रत्यास्थ? (ध्यान दीजिए कि यहाँ हम संघट्ट के दौरान बल के संगत स्थितिज ऊर्जा की बात कर रहे हैं, न कि गुरुत्वीय स्थितिज ऊर्जा की)
उत्तर: चूंकि स्थितिज ऊर्जा केन्द्रों की पृथक्करण दूरी पर निर्भर करती है, इसका यह अर्थ हुआ कि संघट्ट काल में पिण्डों के बीच लगने वाला संरक्षी बल है; अत: ऊर्जा संरक्षित रहेगी। इसलिए संघट्ट प्रत्यास्थ होगा।
9.कोई पिण्ड जो विरामावस्था में है, अचर त्वरण से एकविमीय गति करता है। इसको किसी। समय पर दी गई शक्ति अनुक्रमानुपाती है –
${(i)\;{t_{\dfrac{1}{2}}}}$
${(ii)\;t}$
${(iii)\;{t_{\dfrac{3}{2}}}}$
${(iv)\;{t_2}}$
उत्तर: : त्वरण \['a'\] अचर है तथा $u = 0$
∴ बल $F = ma$ (अचर है) तथा $t$ समय पर वेग $v = at$
∴t समय पर दी गई शंक्ति
$P = Fv$
$= (ma)at$
$= \left( {m{a^2}} \right)t$
$\Rightarrow P \propto t$
अत: विकल्प (ii) सही है।
10.एक,पिण्ड अचर शक्ति के स्रोत के प्रभाव में एक ही दिशा में गतिमान है। इसकाt समय में विस्थापन, अनुक्रमानुपाती है –
${(i)\;{t_{\dfrac{1}{2}}}}$
${(ii)\;t}$
${(iii)\;{t_{\dfrac{3}{2}}}}$
${(iv)\;{t_2}}$
उत्तर:दिया है : शक्ति $P = Fv$ अचर है
$\Rightarrow P = mav$
$= m\dfrac{{dv}}{{dt}} \cdot v$
$\Rightarrow v\dfrac{{dv}}{{dt}} = \dfrac{P}{m}$
$\Rightarrow vdv = \dfrac{P}{m}dt$
समाकलन करने पर, $\dfrac{{{v^2}}}{2} = \dfrac{{Pt}}{m} + {C_1}$
माना $t = 0$ पर $v = 0$ तो ${C_1} = 0$
$\therefore {v^2} = \dfrac{{2P}}{m}t$ या
$\dfrac{{ds}}{{dt}} = \sqrt {\dfrac{{2P}}{m}} t$
$\therefore s = \sqrt {\dfrac{{2P}}{m}} \int {{t^{\dfrac{1}{2}}}} dt$
$S = \sqrt {\dfrac{{2P}}{m}} \cdot \dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + {C_2}$
माना जब $t = 0$ तो $s = \sigma $ तब ${C_2} = 0$
$\therefore s = \dfrac{2}{3}\sqrt {\dfrac{{2P}}{m}} {t^{\dfrac{3}{2}}}$
$\Rightarrow s \propto {t^{\dfrac{3}{2}}}$
अत: विकल्प (iii) सही है।
11.किसी पिण्ड पर नियत बल लगाकर उसे किसी निर्देशांक प्रणाली के अनुसार z – अक्ष के अनुदिश गति करने के लिए बाध्य किया गया है, जो इस प्रकार है –
$\vec F = \left( { - \widehat i + 2\widehat j + 3\widehat k} \right)\;{\text{N}}$
जहाँ \[\hat i,\hat j\] तथा $\hat k$ क्रमशः \[x{\text{ }},{\text{ }}y\] एवं \[z{\text{ }}--\] अक्षों के अनुदिश एकांक सदिश हैं। इस वस्तु को \[z{\text{ }}--\] अक्ष के अनुदिश \[4\] मी की दूरी तक गति कराने के लिए आरोपित बल द्वारा किया गया कार्य कितना होगा?
हल-यहाँ बल, $\vec F = \left( { - \widehat i + 2\widehat j + 3\widehat k} \right)$ न्यूटन
बल का विस्थापन, $\vec d = Z{\text{ - }}$ अक्ष के अनुदिश \[4\] मीटर अर्थात् $4\widehat k$ मीटर $ = \left( {0\widehat i + 0\widehat j + 4\widehat k} \right)$
अत: आरोपित बल द्वारा किया गया कार्य,
$W = \overrightarrow F \cdot \overrightarrow d = \left( { - \widehat i + 2\widehat j + 3\widehat k} \right)\;{\text{N}} \cdot \left( {0\widehat i + 0\widehat j + 4\widehat k} \right)\;{\text{m}}$
$= ( - 1) \times 0 + 2 \times 0 + 3 \times 4$
$= 12\;{\text{J}}$
12. किसी अन्तरिक्ष किरण प्रयोग में एक इलेक्ट्रॉन और एक प्रोटॉन का संसूचन होता है जिसमें पहले कण की गतिज ऊर्जा \[10{\text{ kev}}\] है और दूसरे कण की गतिज ऊर्जा \[100{\text{ kev}}\] है। इनमें कौन-सा तीव्रगामी है, इलेक्ट्रॉन या प्रोटॉन? इनकी चालों को अनुपात ज्ञात कीजिए।
(इलेक्ट्रॉन का द्रव्यमान $ = 9.11 \times {10^{ - 31}}\;{\text{kg}}$ प्रोटॉन का द्रव्यमान $\left. { = 1.67 \times {{10}^{ - 27}}\;{\text{kg}},1{\text{eV}} = 1.60 \times {{10}^{ - 19}}\;{\text{J}}} \right)$
हल- यहाँ इलेक्ट्रॉन की गतिज ऊर्जा ${K_e} = 10\;{\text{keV}}$; इलेक्ट्रॉन का द्रव्यमान ${m_e} = 9.11 \times {10^{ - 31}}$ किग्रा तथा प्रोटॉन की गतिज ऊर्जा ${K_p} = 100\;{\text{keV}}$;
प्रोटॉन का द्रव्यमान ${m_p} = 1.67 \times {10^{ - 27}}$ किग्रा
∵ गतिज ऊर्जा, $K = \dfrac{1}{2}m{v^2}$
∴ वेग,
अत:
$v = \sqrt {\left( {\dfrac{{2K}}{m}} \right)} \Rightarrow v \propto \sqrt K $ तथा
$v \propto \dfrac{1}{{\sqrt m }}\dfrac{{{v_e}}}{{{v_p}}}$
$= \sqrt {\dfrac{{2 \times \dfrac{{{K_e}}}{{{m_e}}}}}{{2 \times \dfrac{{{K_p}}}{{{m_p}}}}}}$
$= \sqrt {\dfrac{{{K_e}}}{{{K_p}}} \times \dfrac{{{m_p}}}{{{m_e}}}}$
$= \sqrt {\left( {\dfrac{{10{\text{keV}}}}{{100{\text{keV}}}}} \right)\left( {\dfrac{{1.67 \times {{10}^{ - 27}}}}{{9.11 \times {{10}^{ - 31}}}}} \right)} = 13.5$
इसलिए इलेक्ट्रॉन की चाल प्रोटॉन की चाल से अधिक होगी।
13. $2$ मिमी त्रिज्या की वर्षा की कोई बूंद \[500\] मी की ऊँचाई से पृथ्वी पर गिरती है। यह अपनी आरम्भिक ऊँचाई के आधे हिस्से तक (वायु के श्यान प्रतिरोध के कारण) घटते त्वरण के साथ गिरती है और अपनी अधिकतम (सीमान्त) चाल प्राप्त कर लेती है, और उसके बाद एकसमान चाल से गति करती है। वर्षा की बूंद पर उसकी यात्रा के पहले व दूसरे अर्द्ध भागों में गुरुत्वीय बल द्वारा किया गया कार्य कितना होगा? यदि बूंद की चाल पृथ्वी तक पहुँचने पर \[10\] मी / से\[ - 1\] हो तो सम्पूर्ण यात्रा में प्रतिरोधी बल द्वारा किया गया कार्य कितना होगा?
हल—वर्षा की बूँद की त्रिज्या $r = 2$ मिमी $ = 2 \times {10^{ - 3}}$ मी
बूँद का घनत्व $\rho = {10^3}$ किग्रा/मी$3$
एँट का द्रव्यमान $m = $ आयतन $ \times $ घनत्व $ = \left( {\dfrac{4}{3}\pi {r^3}} \right)\rho $
∴ बूँद का द्रव्यमान $m = $ आयतन $ \times $ घनत्व $ = \left( {\dfrac{4}{3}\pi {r^3}} \right)\rho $
$= \dfrac{4}{3} \times 3.14 \times {\left( {2 \times {{10}^{ - 3}}} \right)^3} \times {10^3}{\text{ kg }}$
$= 3.35 \times {10^{ - 5}}{\text{ kg}}$
वर्षा की बूँद पर उसकी यात्रा के पहले व दूसरे अर्द्ध भागों पर (प्रत्येक के लिए $h = 500$ मी$ - 2$
$ = 250$ मी) गुरुत्वीय बल द्वारा कृत कार्य बरोबर होगा जिसका परिमाण
$W = $ गुरुत्वीय स्थितिज ऊर्जा में कमी
$W = mgh$
$= 3.35 \times {10^{ - 5}}\;{\text{kg}} \times 9.8\;{\text{m}}{{\text{s}}^{{\text{ - 2}}}} \times 250\;\;{\text{m}}$
$= 0.082\;{\text{J}}$
ऊर्जा संरक्षण के नियम के आधार पर पृथ्वी पर पहुँचने पर-
गतिज ऊर्जा में वृद्धि = प्रतिरोधी बल द्वारा कृत कार्य + गुरुत्वीय स्थितिज ऊर्जा में कमी (अर्थात् गुरुत्व बल द्वारा कृत कार्य)
$\therefore \frac{1}{2} m v^{2}=W_{\text {प्रतिरोधी }}+m g H \text { अत : } W_{\text {प्रतिरोधी }}=\frac{1}{2} m v^{2}-m g H \text { यहाँ }$
$H = 500$ मीटर तथा
$v = 10$ मीसे -1
∴ प्रतिरोधी $= \frac{1}{2}\left( {3.35 \times {{10}^{ - 5}}} \right){(10)^2} - 3.35 \times {10^{ - 5}} \times 9$
$=(0.002 - 0.164)=- 0.162\;{\text{J}}$
Wप्रातरोषो ऋणात्मक है, क्योंकि वर्षा की बूँद पर प्रतिरोधी बल ऊर्ध्वाधरत: ऊपर की ओर तथा बूँद का विस्थापन नीचे की ओर है।
14. किसी गैस-पात्र में कोई अणु \[200{\text{ m}}{{\text{s}}^{{\text{ - 1}}}}\] की चाल से अभिलम्ब के साथ \[30^\circ \] का कोण बनाता हुआ क्षैतिज दीवार से टकराकर पुनः उसी चाल से वापस लौट जाता है। क्या इस संघट्ट में संवेग संरक्षित है? यह संघट्ट प्रत्यास्थ है या अप्रत्यास्थ?
हल- दिया है : अणु की चाल $u = 200\;\;{\text{m}}{{\text{s}}^{{\text{ - 1}}}},\theta = {30^^\circ }$
दीवार से संघट्ट के बाद चाल $v = 200\;{\text{\;m\;}}{{\text{s}}^{{\text{ - 1}}}}$
∵ प्रत्येक प्रकार के संघट्ट में संवेग संरक्षित रहता है।
अत: इस संघट्ट में भी संवेग संरक्षित होगा।
माना अणु का द्रव्यमान $ = m\;{\text{kg}}$
तब दीवार से टकराते समय निकाय की गतिज ऊर्जा ${K_1} = \dfrac{1}{2}m{u^2} = \dfrac{1}{2}m{(200)^2}\;{\text{J}}$
तथा $100$ संघट्ट के बाद गतिज ऊर्जा ${K_2} = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}m{(200)^2}\;{\text{J}}$
∵ गतिज ऊर्जा संरक्षित है; अत: यह एक प्रत्यास्थ संघड्ट है।
15.किसी भवन के भूतल पर लगा कोई पम्प \[30{\text{ }}{{\text{m}}^3}\] आयतन की पानी की टंकी को $15$ मिनट में भर देता है। यदि टंकी पृथ्वी तल से \[40{\text{ m}}\] ऊपर हो और पम्प की दक्षता \[30\% \] हो तो पम्प द्वारा कितनी विद्युत शक्ति का उपयोग किया गया?
उत्तर:∴ पम्प की आवश्यक सामर्थ्य, $P = \dfrac{W}{t} = \dfrac{{1.176 \times {{10}^7}\;{\text{J}}}}{{900\;{\text{s}}}} = 1.306 \times {10^4}$ वाट
$ = 43.6$ किलोवाट
16. दो समरूपी बॉल-बियरिंग एक-दूसरे के सम्पर्क में हैं और किसी घर्षणरहित मेज $1$ पर विरामावस्था में हैं। इनके साथ समान द्रव्यमान का कोई दूसरा बॉल-बियरिंग, जो आरम्भ में \[y\] चाल से गतिमान है. सम्मुख संघट्ट करता है। यदि संघट्ट प्रत्यास्थ है तो संघट्ट के पश्चात् निम्नलिखित (चित्र) में से कौन-सा परिणाम सम्भव है?
चित्र: 6.4 सम्मुख संघट्ट
उत्तर:माना प्रत्येक बॉल-बियरिंग का द्रव्यमान ${\text{'m'}}$ है।
संघट्ट से पूर्व निकाय की गतिज ऊर्जा
${K_1} = \dfrac{1}{2}m{V^2} + 0 + 0$
$= \dfrac{1}{2}m{V^2}$
दशा (i) में संघट्ट के बाद निकाय की गतिज ऊर्जा
${K_2} = 0 + \dfrac{1}{2}(m + m){\left( {\dfrac{V}{2}} \right)^2}$
$= \dfrac{1}{4}m{V^2}$
स्पष्ट है कि ${{\text{K}}_{\text{2}}} < {{\text{K}}_{\text{1}}}$
दशा (ii) में संघट्ट के बाद निकाय की कुल ऊर्जा
${K_2} = 0 + 0 + \dfrac{1}{2}m{V^2}$
$= \dfrac{1}{2}m{V^2}$
स्पष्ट है कि ${{\text{K}}_{\text{2}}}{\text{ = }}{{\text{K}}_{\text{1}}}$
दशा (iii) में संघट्ट के बाद निकाय की गतिज ऊर्जा
${K_2} = \dfrac{1}{2}(m + m + m){\left( {\dfrac{V}{3}} \right)^2}$
$= \dfrac{1}{6}m{V^2}$
स्पष्ट है कि ${{\text{K}}_{\text{2}}}{\text{ < }}{{\text{K}}_{\text{1}}}$
यह दिया गया है कि संघट्ट प्रत्यास्थ है; अत: निकाय की गतिज ऊर्जा संरक्षित रहेगी।
∴ केवल दशा (ii) में ही गतिज ऊर्जा संरक्षित रही है; अतः केवल यही परिणाम सम्भव है।
17. किसी लोलक के गोलक ${\text{'A'}}$ को, जो ऊधर से \[30^\circ \] का कोण बनाता है, छोड़े जाने पर मेज पर, विरामावस्था में रखे दूसरे गोलक ${\text{'B'}}$ से टकराता है जैसा कि चित्र में प्रदर्शित है। ज्ञात कीजिए कि संघट्ट के पश्चात् गोलक ${\text{'A'}}$ कितना ऊँचा उठता है? गोलकों के आकारों की उपेक्षा कीजिए और मान लीजिए कि संघट्ट प्रत्यास्थ है।
चित्र: सरल लोलक के गोले की अन्य गोल के साथ टक्कर
उत्तर: दोनों गोलक समरूप हैं तथा संघट्ट प्रत्यास्थ है; अतः संघट्ट के दौरान लटका हुआ गोलक अपना सम्पूर्ण संवेग नीचे रखे गोलक को दे देता है और जरा भी ऊपर नहीं उठता।
18. किसी लोलक के गोलक को क्षैतिज अवस्था से छोड़ा गया है। यदि लोलक की लम्बाई \[1.5{\text{ m}}\] है तो निम्नतम बिन्दु पर आने पर गोलक की चाल क्या होगी? यह दिया गया है कि इसकी प्रारम्भिक ऊर्जा का \[5\% \] अंश वायु प्रतिरोध के विरुद्ध क्षय हो जाता है।
हल-प्रारम्भिक स्थिति ${\text{'A'}}$ में गोलक की गतिज ऊर्जा ${{\text{K}}_{\text{A}}}{\text{ = 0}}$
स्थितिज ऊर्जा ${{\text{U}}_{\text{A}}}{\text{ = mgl}}$
∴ ${\text{'A'}}$ पर गोलक की कुल ऊर्जा
${E_A} = {K_A} + {U_A}$
$= 0 + mgl$
$= mgl$
निम्नतम बिन्दु ${\text{'B'}}$ पर गोलक की गतिज ऊर्जा ${K_B} = \dfrac{1}{2}mv_B^2$
तथा स्थितिज ऊर्जा ${U_B} = 0$
कुल ऊर्जा
${E_B} = {K_B} + {U_B}$
$= \dfrac{1}{2}mv_B^2 + 0$
$= \dfrac{1}{2}mv_B^2$
चूँकि आरम्भिक ऊर्जा का \[5\% \] अंश वायु प्रतिरोध के विरुद्ध क्षय हो जाता है, इसलिए प्रारम्भिक ऊर्जा ${{\text{E}}_{\text{A}}}$ का $95\% $ अन्तिम ऊर्जा ${{\text{E}}_{\text{B}}}$ में बदलता है।
$\dfrac{1}{2}mv_B^2 = mgl$ का $95\% $
$= 0.95{\text{mgl}}{v_B}$
$= \sqrt {\dfrac{{2 \times 0.95{\text{mgl}}}}{{\text{m}}}}$
$= \sqrt {1.90{\text{gl}}}$
$= \sqrt {1.90 \times 9.8 \times 1.5}$
$= 5.285 \approx 5.3$
19. \[300{\text{ kg}}\] द्रव्यमान की कोई ट्रॉली, \[25{\text{ kg}}\] रेत का बोरा लिए हुए किसी घर्षणरहित पथ पर \[27{\text{ km}}{{\text{h}}^{{\text{ - 1}}}}\] की एकसमान चाल से गतिमान है। कुछ समय पश्चात बोरे में किसी छिद्र से रेत
\[0.05{\text{ kg}}{{\text{s}}^{{\text{ - 1}}}}\] की दर से निकलकर ट्रॉली के फर्श पर रिसने लगती है। रेत का बोरा खाली होने के पश्चात् ट्रॉली की चाल क्या होगी?
उत्तर:ट्रॉली तथा रेत का बोरा एक ही निकाय के अंग हैं जिस पर कोई बाह्य बल नहीं लगा है (एकसमान वेग के कारण); अत: निकाय का रैखिक संवेग नियत रहेगा भले ही निकाय में किसी भी प्रकार का आन्तरिक परिवर्तन (रेत ट्रॉली में ही गिर रहा है, बाहर नहीं) क्यों न हो जाए। अतः ट्रॉली की चाल \[27{\text{ km}}{{\text{h}}^{{\text{ - 1}}}}\] ही बनी रहेगी।
20. \[0.5{\text{ kg}}\] द्रव्यमान का एक कण \[a \times \dfrac{3}{2}\] वेग से सरल रेखीय मति करता है, जहाँ \[a = 5{\text{ }}{{\text{m}}^{\dfrac{{{\text{ - 1}}}}{{\text{2}}}}}{{\text{s}}^{{\text{ - 1}}}}\] है। $x = 0$ से $x = 2\;{\text{m}}$ तक इसके विस्थापन में कुल बल द्वारा किया गया कार्य कितना होगा?
उत्तर:यहाँ \[m = 0.5{\text{ kg}}\]
\[a \times \dfrac{3}{2},a = 5{\text{ }}{{\text{m}}^{\dfrac{{{\text{ - 1}}}}{{\text{2}}}}}{{\text{s}}^{{\text{ - 1}}}}\]
$x = 0$ पर प्रारंभिक वेग, ${v_1} = a{x_0} = 0$
$x = 2\;{\text{m}}$ पर अंतिम वेग, $ = 10\sqrt 2 $
कार्य किया गया ${\text{ = KE}}$ में वृद्धि
$= \dfrac{1}{2}m{v^2} - \dfrac{1}{2}mv_0^2$
$= \dfrac{1}{2}m\left( {{v^2} - v_0^2} \right)$
$= \dfrac{1}{2}m{v^2}W$
$= \dfrac{1}{2} \times 0.5\;\;{\text{kg}} \times (10\sqrt 2 )$
$= 50\;\;{\text{J}}$
21. किसी पवनचक्की के ब्लेड, क्षेत्रफल ${\text{'A'}}$ के वृत्त जितना क्षेत्रफल प्रसर्प करते हैं।
(a) यदि हवा \[\upsilon \] वेग से वृत्त के लम्बवत दिशा में बहती है तो ${\text{'t'}}$ समय में इससे गुजरने वाली वायु का द्रव्यमाने क्या होगा?
हल-ब्लेड का क्षेत्रफल ${\text{A}} = 30$ मीटर$2$,
हवा का वेग $v = 36$ किमी/घण्टा $ = 36 \times \left( {\dfrac{5}{{18}}} \right)$ मी/से $ = 10$ मी / से
वायु का घनत्व $\rho = 1.2$ किग्रा-मी$ - 3$
उत्तर: ${\text{'t'}}$ समय में गुजरने वाली वायु का आयतन $V = A(v \times t)$
∴ वायु का द्रव्यमान, $m = V \times \rho = Avt \times \rho $
अर्थात् $m = 30$ मी$2$ $ \times 10$ मी/से \[ \times t \times 1.2\]किग्रा / मी$3$ $ = 360{\text{t}}$ किग्रा
(b) वायु की गतिज ऊर्जा क्या होगी?
उत्तर: वायु की गतिंज ऊर्जा,
$K = \dfrac{1}{2}m{v^2}$
$= \dfrac{1}{2}(Avt\rho ) \times {v^2}$
$= \dfrac{1}{2}A\rho {t^3}$
$\therefore {(10)^3}\;{\text{J}} = 18000t\;\;{\text{J}}$
(c) मान लीजिए कि पवनचक्की हवा की \[25\% \] ऊर्जा को विद्युत ऊर्जा में रूपान्तरित कर देती है। यदि ${\text{A}} = 30$ मी$2$ और \[{\text{\upsilon }} = 36\] किमी/घण्टा और वायु का घनत्व \[1:2\] किग्रा मी$ - 3$ है। तो उत्पन्न विद्युत शक्ति का परिकलन कीजिए।
उत्तर: ${\text{'t'}}$ समय में उत्पन्न वैद्युत ऊर्जा; $W = $ वायु की गतिज ऊर्जा का $25\% $
$= \dfrac{{25}}{{100}} \times 18000t$
$= (45000) \cdot t\;{\text{J}}$
∴ उत्पन्न वैद्युत शक्ति $ = \dfrac{W}{t} = (4500)$ जूल सेकण्ड $ = 4500$ वाट $ = 4.5$ किलोवाट
22. कोई व्यक्ति वजन कम करने के लिए 10 किग्रा द्रव्यमान को \[0.5\] मी की ऊँचाई तक \[1000\] बार उठाता है। मान लीजिए कि प्रत्येक बार द्रव्यमान को नीचे लाने में खोई हुई ऊर्जा क्षयित हो जाती है।
(a) वह गुरुत्वाकर्षण बल के विरुद्ध कितना कार्य करता है?
हल- गुरुत्वाकर्षण बल के विरुद्ध किया गया कार्य
अर्थात्
$W = $ स्थिंतिज ऊर्जा में वृद्धि }
$W = 1000({\text{mgh}})$
$= 1000(10 \times 9.8 \times 0.5)$
$= 4.9 \times {10^4}\;{\text{J}}$
(b) यदि वसा \[3.8{\text{ }} \times {\text{ }}{10^7}\;\;{\text{J}}\] ऊर्जा प्रति किलोग्राम आपूर्ति करता हो जो कि \[20\% \] दक्षता की दर से यान्त्रिक ऊर्जा में परिवर्तित हो जाती है तो वह कितनी वसा खर्च कर डालेगा
उत्तर: वसा द्वारा प्रति किलोग्राम आपूर्तित यान्त्रिक ऊर्जा
$= \left( {\dfrac{{20}}{{100}}} \right) \times 3.8 \times {10^7}$
$= 7.6 \times {10^6}\;\;{\text{J/Kg}}$
∴ व्यक्ति, द्वारा खर्च की गयी वसा =W प्रति किग्रा आपूर्ति ऊर्जा
$= \dfrac{{4.9 \times {{10}^4}}}{{7.6 \times {{10}^6}}}$
$= 6.45 \times {10^{ - 3}}\;\;{\text{kg}}$
23. कोई परिवार \[8{\text{ }}kw\] विद्युत-शक्ति का उपभोग करता है।
(a) किसी क्षैतिज सतह पर सीधे आपतित होने वाली सौर ऊर्जा की औसत दर \[200{\text{ w}}{{\text{m}}^{{\text{ - 2}}}}\] है। यदि इस ऊर्जा का \[20\% \] भाग लाभदायक विद्युत ऊर्जा में रूपान्तरित किया जा सकता है तो \[8\;{\text{kw}}\] की विद्युत आपूर्ति के लिए कितने क्षेत्रफल की आवश्यकता होगी?
हल-(a) परिवार द्वारा प्रयुक्त विद्युत शक्ति ${\text{P}} = 8$ किलोवाट $ = 8 \times {10^3}$ वाट
सौर ऊर्जा के आपतन की दर $ = 200$ वाट/मीटर$2$
यदि आवश्यक क्षेत्रफल ${\text{'A'}}$ मी$2$ हो तो इस क्षेत्रफल पर आपतित सौर शक्ति $ = 200\;{\text{A}}$ वाट परन्तु आपतित ऊर्जा का 20% भाग लाभदायक ऊर्जा में बदलता है इसलिए लाभदायक विद्युत शक्ति
$P = 200A \times 20\% $
$= 200A \times \left( {\dfrac{{20}}{{100}}} \right)$
$= 40A$
समी० (1) तथा समी० (2) से,
$\Rightarrow 40A = 8 \times {10^3}\quad W$
$\Rightarrow = \left( {\dfrac{{8 \times {{10}^3}}}{{40}}} \right)$
$= 200\;{{\text{m}}^2}$
(b) इस क्षेत्रफल की तुलना किसी विशिष्ट भवन की छत के क्षेत्रफल से कीजिए।
माना विशिष्ट भवन वर्गाकार है जिसकी लम्बाई व चौड़ाई ${\text{'x'}}$ मीटर है, तब
अथवा
${x^2} = 200x \cong 14$मीटर
अत: भवन की विमाएँ $14$ मी $ \times 14$ मी व क्षेत्रफल लगभग $196$ मीटर$2$ का होना चाहिए। अत: \[8{\text{ }}kw\] विद्युत आपूर्ति के लिए आवश्यक क्षेत्रफल विशिष्ट भवन की छत के क्षेत्रफल के साथ तुलनीय है।
अतिरिक्त अभ्यास
24. \[0.012{\text{ kg}}\] द्रव्यमान की कोई गोली \[70{\text{ m}}{{\text{s}}^{{\text{ - 1}}}}\] की क्षैतिज चाल से चलते हुए \[0.4{\text{ kg}}\] द्रव्यमान के लकड़ी के गुटके से टकराकर गुटके के सापेक्ष तुरन्त ही विरामावस्था में आ जाती है। गुटके को छत से पतली तारों द्वारा लटकाया गया है। परिकलन कीजिए कि गुटका किस ऊँचाई तक ऊपर उठता है? गुटके में पैदा हुई ऊष्मा की मात्रा का भी अनुमान लगाइए।
हल : गोली का द्रव्यमान, ${\text{m}} = 0.012$ किग्रा
गोली की प्रारम्भिक चाल \[\mu = 70\] मी से$ - 1$ तथा गुटके का द्रव्यमान \[M = 0.4\] किग्रा
जब गोली गुटके से टकराकर गुटके के सापेक्ष विरामावस्था में आ जाती है तो इसका अर्थ है कि गोली गुटके में घुसकर रुक जाती है तथा (गोली + गुटका) निकाय (माना) एक साथ ${\text{'\upsilon '}}$ वेग से गति करके (माना) ${\text{'h'}}$ ऊँचाई ऊपर उठ जाता है।
संवेग संरक्षण के सिद्धान्त से,
${\text{mu}} + {\text{M}} \times 0 = ({\text{M}} + {\text{m}}){\text{u}}$
$\Rightarrow v = \frac{{mu}}{{(M + m)}}$
$\therefore v = \left[ {\frac{{0.012 \times 70}}{{(0.4 + 0.012)}}} \right]{\text{m}}/{\text{s}}$
$= 2.04\;{\text{m}}/{\text{s}}$
इस स्थिति में निकाय द्वारा प्राप्त गतिज ऊर्जा $ = \dfrac{1}{2}(M + m){v^2}$ तथा इसके ${\text{'h'}}$ ऊँचाई ऊपर उठने पर यह गतिज ऊर्जा गुरुत्वीय स्थितिज ऊर्जा में बदल जाती है।
अत:
$(M + m)gh$
$= \dfrac{1}{2}(M + m){v^2}h$
$= \dfrac{{{v^2}}}{{2g}}$
$= \left[ {\dfrac{{{{(2.04)}^2}}}{{2 \times 9.8}}} \right]m$
$= 0.212m$
चूँकि गुटके व गोली की टक्कर अप्रत्यास्थ है इसलिए गतिज ऊर्जा संरक्षित नहीं रहती तथा कुछ गतिज ऊर्जा ऊष्मा में बदल जाती है।
गुटके में पैदा हुई ऊष्मा = गतिज ऊर्जा में कमी
= प्रारम्भिक गतिज ऊर्जा - अन्तिम गतिज ऊर्जा
$= \dfrac{1}{2}m{u^2} - \dfrac{1}{2}(M + m){v^2}$
$\left[ {\dfrac{1}{2} \times 0.012 \times {{(70)}^2}} \right] - \left[ {\dfrac{1}{2}(0.4 + 0.02){{(2.04)}^2}} \right]$
$= (29.4 - 0.86)$
$= 28.54\;\;{\text{J}}$
25. दो घर्षणरहित आनत पथ, जिनमें से एक की ढाल अधिक है। और दूसरे की ढाल कम है, बिन्दु ${\text{'A'}}$ पर मिलते हैं। बिन्दु ${\text{'A'}}$ से प्रत्येक पथ पर एक-एक पत्थर को विरामावस्था से नीचे सरकाया जाता है (चित्र) क्या ये पत्थर एक ही समय \[40\] पर नीचे पहुँचेंगे? क्या वे वहाँ एक ही चाल से पहुँचेंगे? व्याख्या कीजिए। यदि \[{\theta _1}\; = 30^\circ ,{\text{ }}{\theta _2} = 60^\circ \] और \[h = 10{\text{ m}}\] दिया है तो दोनों पत्थरों की चाल एवं उनके द्वारा नीचे पहुँचने में लिए गए समय क्या हैं?
चित्र: 6.7 दो घर्षणरहित पथ
उत्तर:चित्र से, तल ${\text{'AB'}}$ की लम्बाई, ${l_1} = \dfrac{h}{{\sin {\theta _1}}}$
इस तल पर नीचे की ओर पत्थर का त्वरण, ${a_1} = g\sin {\theta _1}$
यदि ड्स तल पर नीचे पहुँचने में पत्थर द्वारा लिया गया समय t1 सेकण्ड हो तो,
$s = ut + \dfrac{1}{2}a{t^2}$ से,
$\dfrac{h}{{\sin {\theta _1}}} = 0 \times {t_1} + \dfrac{1}{2}g\sin {\theta _1} \times t_1^2{t_1}$
$= \dfrac{1}{{\sin {\theta _1}}} \cdot \sqrt {\dfrac{{2h}}{g}} $
$= \dfrac{1}{{\sin {{30}^^\circ }}}\sqrt {\dfrac{{2 \times 10}}{{10}}} $
$= 2\sqrt 2 $
सेकण्ड
इसी प्रकार तल ${\text{'AC'}}$ के लिए इस पर पत्थर के नीचे आने का समय
${t_2} = \dfrac{1}{{\sin {\theta _2}}}\sqrt {\dfrac{{2h}}{g}} = \dfrac{1}{{\sin {{60}^^\circ }}}\sqrt {\dfrac{{2 \times 10}}{{10}}} = \dfrac{{2\sqrt 2 }}{{\sqrt 3 }}$ सेकण्ड
अत: गति की समीकरण ${v^2} = {u^2} + 2as$ से,
${v^2} = 0 + 2\left( {g\sin {\theta _1}} \right) \times \dfrac{h}{{\sin {\theta _1}}}$
$= 2gh$
अथवा पत्थर की ${\text{'B'}}$ पर पहुँचने की चाल, $v = \sqrt {2gh} $
चूँकि यह $\theta $ पर निर्भर नहीं करती है, अत: ${\text{'AB'}}$ तथा ${\text{'AC'}}$ पर नीचे आने वाले पत्थर नीचे एक ही चाल से पहुँचेंगे जिसका मान
$v = \sqrt {2gh} $
$= \sqrt {2 \times 10 \times 10} $
$= 10\sqrt 2 $
$= 10 \times 1.41$
$= 14.1\;\;{\text{m/s}}$
26. किसी रूक्ष आनत तल पर रखा हुआ \[1{\text{ kg}}\] द्रव्यमान का गुटका किसी \[100{\text{ N}}{{\text{m}}^{{\text{ - 1}}}}\] स्प्रिंग नियतांक वाले स्प्रिंग से दिए गए चित्र के अनुसार जुड़ा है। गुटके को सिंप्रग की बिना खिंची। स्थिति में, विरामावस्था से छोड़ा जाता है। गुटका विरामावस्था में आने से पहले आनत तल पर \[10{\text{ cm}}\] नीचे खिसक जाता है। गुटके और आनत तल चित्र के मध्य घर्षण गुणांक ज्ञात कीजिए। मान लीजिए कि स्प्रिंग का द्रव्यमान उप्रेक्षणीय है और घिरनी घर्षणरहित है।
चित्र: 6.8 गुटका स्प्रिंग निकाय
हल : यहाँ दिये गये गुटके पर कार्य करने वाले विभिन्न बल चित्र में प्रदर्शित किये गये हैं। नत समतल के लम्बवत् पिण्ड की साम्यावस्था के लिए तल की गुटके पर अभिलम्ब प्रतिक्रिया
$R = Mg\cos {37^^\circ }$
∴ गुटके तथा तल के बीच घर्षण बल $f = \mu \cdot R = \mu mg\cos {37^^\circ }$
यदि गुटके के तल पर नीचे की ओर विस्थापन x हो तो स्प्रिग का क्षैतिज तल पर खिंचाव (लम्बाई में वृद्धि) भी $'x'$ होगी।
जहाँ $x = 10$ सेमी $ = 0.10$ मी
माना ऊर्ध्वाधर विस्थापन ${\text{'h'}}$ है जहाँ $h = x\sin {37^^\circ }$
इस प्रकार ऊर्जा संरक्षण नियम के आधार पर,
गुरुत्वीय स्थितिज ऊर्जा में कमी $\therefore Mgh = \dfrac{1}{2}k{x^2} + fx$
या $\operatorname{Mg} x\sin {37^^\circ } = \dfrac{1}{2}k{x^2} + \mu Mg\cos {37^^\circ }x$
अथवा $Mg\sin {37^^\circ } = \dfrac{1}{2}kx + \mu Mg\cos {37^^\circ }$
ज्ञात मान रखने पर,
सरल करने पर $u = 0.125$
27. \[0.3{\text{ kg}}\] द्रव्यमान का कोई बोल्ट \[7{\text{ m}}{{\text{s}}^{{\text{ - 1}}}}\] की एकसमान चाल से नीचे आ रही किसी लिफ्ट की छत से गिरता है। यह लिफ्ट के फर्श से टकराता है (लिफ्ट की लम्बाई \[ = 3\;{\text{m}}\]) और वापस नहीं लौटता है। टक्कर द्वारा कितनी ऊष्मा उत्पन्न हुई? यदि लिफ्ट स्थिर होती तो क्या आपको उत्तर इससे भिन्न होता?
हल : जड़त्व के कारण बोल्ट की प्रारम्भिक चाल, लिफ्ट की चाल के बराबर है। अत: लिफ्ट के सापेक्ष बोल्ट की प्रारम्भिक चाल शून्य है। जब बोल्ट नीचे गिरता है, इसकी स्थितिज ऊर्जा गतिज ऊर्जा में बदलती है, जो अन्त में ऊष्मा में बदल जाती है।
∴ उत्पन्न ऊष्मा $ = mgh = 3 \times 9.8 \times 3 = 8.82\;\;{\text{J}}$
यदि लिफ्ट स्थिर होती तो भी बोल्ट की लिफ्ट के सापेक्ष चाल शून्य होती; इसलिए उत्तर अब भी वही रहेगा अर्थात् अब भी इस दशा में उत्पन्न ऊष्मा $ = 8.80$ जूल।
28. \[200{\text{ kg}}\] द्रव्यमान की कोई ट्रॉली किसी घर्षणरहित पथ पर \[36{\text{ km}}{{\text{h}}^{{\text{ - 1}}}}\] की एकसमान चल से गतिमान है। $20\;{\text{kg}}$ द्रव्यमान का कोई बच्चा ट्रॉली के एक सिरे से दूसरे सिरे तक (\[10{\text{ m}}\] दूर) ट्रॉली के सापेक्ष \[4{\text{ m}}{{\text{s}}^{{\text{ - 1}}}}\] की चाल से ट्रॉली की गति की विपरीत दिशा में दौड़ता है। और ट्रॉली से बाहर कूद जाता है। ट्रॉली की अन्तिम चाल क्या है? बच्चे के दौड़ना आरम्भ करने के समय से ट्रॉली ने कितनी दूरी तय की ?
उत्तर: मान लीजिए कि एक प्रेक्षक समान गति से ट्रॉली के समानांतर यात्रा कर रहा है। वह द्रव्यमान ${\text{'M'}}$ की ट्रॉली और द्रव्यमान ${\text{'m'}}$ के बच्चे के प्रारंभिक संवेग को शून्य के रूप में देखेगा। जब बच्चा विपरीत दिशा में कूदता है, तो वह ट्रॉली के वेग में ${\text{'v'}}$ की वृद्धि को देखेगा।
मान लीजिए कि आप बच्चे का वेग हैं। वह बच्चे को वेग से उतरते हुए देखेगा (\[{\text{u - u}}\]) इसलिए, प्रारंभिक गति $ = 0$
अंतिम गति \[ = M\Delta {\text{ }}v - m\left( {u - v} \right)\]
इसलिए, \[M\Delta v - m\left( {u - v} \right) = 0\]
जहाँ से \[v = \dfrac{{mu}}{{M + m}}\]
मान रखना \[v = \dfrac{{4 \times 20}}{{20 + 220}}\;{\text{m}}{{\text{s}}^{{\text{ - 1}}}}\]
.-. ट्रॉली की अंतिम गति \[10.36{\text{ m}}{{\text{s}}^{{\text{ - 1}}}}{\text{\;}}\] है ।
बच्चे को ट्रॉली पर दौड़ने में $2.5$ सेकंड का समय लगता है।
इसलिए, ट्रॉली एक दूरी तय करती है \[ = 2.5 \times 10.36\] मीटर $ = 25.9$ मीटर।
29. चित्र में दिए गए स्थितिज ऊर्जा वक़ों में से कौन-सा वक्र सम्भवतः दो बिलियर्ड-गेंदों के प्रत्यास्थ संघट्ट का वर्णन नहीं करेगा? यहाँr गेंदों के केन्द्रों के मध्य की दूरी है और प्रत्येक गेंद का अर्धव्यास R है।
चित्र: स्थितिज ऊर्जा वक्र
उत्तर:जब गेंदें संघट्ट करेंगी और एक-दूसरे को संपीडित करेंगी तो उनके केन्द्रों के बीच की दूरी \[{\text{r, 2R}}\] से घटती जाएगी और इनकी स्थितिज ऊर्जा बढ़ती जाएगी।
प्रत्यानयन काल में गेंदें अपने आकार को वापस पाने की क्रिया में एक-दूसरे से दूर हटेंगी तो उनकी स्थितिज ऊर्जा घटेगी और प्रारम्भिक आकार पूर्णतः प्राप्त कर लेने पर (\[{\text{r = 2R}}\]) स्थितिज ऊर्जा शून्य हो जाएगी।
केवल ग्राफ (${\text{'V'}}$) की ही उपर्युक्त व्याख्या हो सकती है; अतः अन्य ग्राफों में से कोई भी बिलियर्ड गेंदों के प्रत्यास्थ संघट्ट को प्रदर्शित नहीं करता है।
30.विरामावस्था में किसी मुक्त न्यूट्रॉन के क्षय पर विचार कीजिए \[n \to p + {e^ - }\]
प्रदर्शित कीजिए कि इस प्रकार के द्विपिण्ड क्षय से नियत ऊर्जा का कोई इलेक्ट्रॉन अवश्य उत्सर्जित होना चाहिए, और इसलिए यह किसी न्यूट्रॉन या किसी नाभिक के \[\beta {\text{ }}--\] क्ष्य में प्रेक्षित सतत ऊर्जा वितरण का स्पष्टीकरण नहीं दे सकता।
[नोट – इस अभ्यास का हल उन कई तर्कों में से एक है जिसे डब्ल्यु पॉली द्वारा \[\beta {\text{ }}--\] क्षय के क्षय उत्पादों में किसी तीसरे कण के अस्तित्व का पूर्वानुमान करने के लिए दिया गया था। यह कण न्यूट्रिनो के नाम से जाना जाता है। अब हम जानते हैं कि यह निजी प्रचक्रण $\dfrac{1}{2}$ (जैसे \[{e^ - },p\] या \[n\]) का कोई कण है। लेकिन यह उदासीन है या द्रव्यमानरहित या इसका द्रव्यमान (इलेक्ट्रॉन के द्रव्यमान की तुलना में) अत्यधिक कम है और जो द्रव्य के साथ दुर्बलता से परस्पर क्रिया करता है। न्यूट्रॉन की उचित क्षय – प्रक्रिया इस प्रकार है : \[n \to p + {e^ - } + v\]]
चित्र: 6.11 बीटा कणो की संख्या तथा उनक गतिज ऊर्जा मे वक्र
उत्तर:चूँकि न्यूट्रॉन विरामावस्था में है; अत: उक्त अभिक्रिया के अनुसार न्यूट्रॉन क्षय में एक नियत ऊर्जा मुक्त होनी चाहिए और \[\beta {\text{ }}--\] कण को उस नियत ऊर्जा के साथ नाभिक से उत्सर्जित होना चाहिए। इस प्रकार नाभिक से उत्सर्जित \[\beta {\text{ }}--\] कण की ऊर्जा नियत होनी चाहिए, जबकि दिया गया ग्राफ यह प्रदर्शित करता है कि उत्सर्जित \[\beta {\text{ }}--\] कण शून्य से लेकर एक महत्तम मान के बीच कोई भी ऊर्जा लेकर बाहर आ सकता है; अतः न्यूट्रॉन क्षय की उक्त अभिक्रिया ग्राफ द्वारा प्रदर्शित हु-कणों के सतत ऊर्जा वितरण की व्याख्या नहीं कर सकता।
NCERT Solutions for Class 11 Physics Chapter 6 Work, Energy and Power in Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Physics Chapter 6 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Physics Chapter 6 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 11 Physics Chapter 6 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 11 Physics Work, Energy and Power solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 11 Physics Work, Energy and Power in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 11 can download these solutions at any time as per their convenience for self-study purposes.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 11 Physics in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.
FAQs on NCERT Solutions For Class 11 Physics Chapter 6 Work, Energy And Power in Hindi - 2025-26
1. How do the NCERT Solutions for Class 11 Physics Chapter 6 help in mastering the concepts of Work, Energy, and Power?
Vedantu's NCERT Solutions for Class 11 Physics Chapter 6 are designed to build a strong conceptual foundation. They provide detailed, step-by-step answers for every question in the NCERT textbook, aligning perfectly with the CBSE 2025-26 syllabus. By practising with these solutions, students can understand the correct methodology for solving problems related to the work-energy theorem, potential energy, and collisions, which is crucial for exam success.
2. What is the correct method to solve numericals on the work-energy theorem as per the NCERT Solutions for Chapter 6?
The NCERT Solutions for Chapter 6 demonstrate a systematic approach to solving problems using the work-energy theorem. The recommended steps are:
Identify all the forces (conservative and non-conservative) acting on the object.
Calculate the net work done (W_net) by all these forces on the object.
Determine the initial (K_i) and final (K_f) kinetic energies of the object.
Apply the work-energy theorem, which states that W_net = ΔK = K_f - K_i.
Solve the resulting equation for the unknown variable, ensuring all units are consistent.
3. How do the NCERT Solutions explain solving problems involving potential energy of a spring?
The NCERT Solutions for Class 11 Physics Chapter 6 clearly explain that the potential energy of a spring is given by the formula U = (1/2)kx², where 'k' is the spring constant and 'x' is the displacement from the equilibrium position. The solutions guide students to first identify the initial and final compression or extension of the spring and then use the principle of conservation of mechanical energy (if only conservative forces are acting) to relate the change in potential energy to the change in kinetic energy.
4. Why is it critical to distinguish between conservative and non-conservative forces when solving Chapter 6 problems?
It is critical because the principle of conservation of mechanical energy (sum of kinetic and potential energy) holds true only when all the forces doing work on the system are conservative forces (like gravity or spring force). If a non-conservative force like friction is present, mechanical energy is not conserved; it is converted into other forms, such as heat. The NCERT solutions for this chapter repeatedly emphasise checking for forces like friction to decide whether to apply energy conservation or the more general work-energy theorem.
5. What common mistakes do students make in collision problems, and how do the NCERT solutions help prevent them?
A common mistake is incorrectly applying the conservation of kinetic energy. The NCERT solutions clarify that:
Momentum is conserved in both elastic and inelastic collisions.
Kinetic energy is conserved only in elastic collisions. In inelastic collisions, some kinetic energy is lost.
The solutions provide solved examples for both types, forcing students to first identify the collision type before applying the correct conservation law, thereby preventing this frequent error.
6. How do the NCERT Solutions for Chapter 6 clarify the difference between 'work' and 'power' in practical applications?
The solutions clarify this by solving problems that highlight their distinct definitions. Work is the total energy transferred (measured in Joules), regardless of the time taken. For example, lifting a box to a certain height requires a fixed amount of work. Power, however, is the rate at which work is done (measured in Watts). The solutions use examples where the same amount of work is done in different time intervals to show how power changes. This helps students understand that a more powerful engine does the same work faster.
7. How are the concepts of one-dimensional and two-dimensional collisions approached differently in the NCERT solutions?
The NCERT Solutions approach them by applying the same fundamental principles but with different mathematical frameworks. For one-dimensional collisions, the conservation of momentum is applied along a single axis. For two-dimensional collisions, the solutions demonstrate that momentum is a vector quantity and must be conserved independently along two perpendicular axes (e.g., the x-axis and y-axis). This component-wise analysis is a key step-by-step method shown in the solutions for accurately solving 2D collision problems.
8. What are the key topics within Chapter 6 for which these NCERT Solutions are most beneficial for the 2025-26 board exams?
For the 2025-26 CBSE session, these NCERT Solutions are particularly beneficial for mastering:
Applications of the Work-Energy Theorem.
Calculations involving conservative and non-conservative forces.
Problems on elastic and inelastic collisions in one and two dimensions.
Numerical problems on the potential energy of a spring and the conservation of mechanical energy.
The step-by-step methods provided are tailored to help students write answers that fetch full marks in the exams.






















