$\begin{gathered}

\left( {{a^m}} \right)\left( {{a^n}} \right) = {a^{m + n}} \hfill \\

{\left( {ab} \right)^m} = {a^m}{b^m} \hfill \\

{\left( {{a^m}} \right)^n} = {a^{mn}} \hfill \\

\end{gathered} $

$\begin{gathered}

{a^0} = 1 \hfill \\

\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \hfill \\

{a^m} = \frac{1}{{{a^{ - m}}}} \hfill \\

{a^{ - m}} = \frac{1}{{{a^m}}} \hfill \\

\end{gathered} $

Find value of (3 + 7)

Sol: Using formula ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$

$\begin{gathered}

{\left( {3 + 7} \right)^2} = {3^2} + {7^2} + 2\left( 3 \right)\left( 7 \right) \hfill \\

\quad \quad \quad \, = 9 + 49 + 42 \hfill \\

\quad \quad \quad \, = 100 \hfill \\

\end{gathered} $

Find the value of (4 + 3 − 2)