Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 4 - Exercise

ffImage
Last updated date: 17th Apr 2024
Total views: 572.1k
Views today: 12.72k

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction (Ex 4.1) Exercise 4.1

Free PDF download of NCERT Solutions for Class 11 Maths Chapter 4 Exercise 4.1 (Ex 4.1) and all chapter exercises at one place prepared by expert teachers as per NCERT (CBSE) books guidelines. Class 11 Maths Chapter 4 Principle of Mathematical Induction Exercise 4.1 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


What will You Learn in Exercise 4.1 of NCERT Class 11 Maths Chapter 4?

The Class 11 Maths Chapter 4 Principle of Mathematical Induction has only one exercise (E.x - 4.1) which comprises a total of 24 questions, covering all the main topics discussed in the chapter. The exercise contains questions of all difficulty levels - from easy to complex. Some problems even require students to analyse the statement in detail and apply their thought process to solve them. 


To solve Exercise 4.1 of NCERT Class 11 Maths Chapter 4 easily, you need to know the two basic steps required to prove a question based on mathematical induction. To prove if a statement is true for a certain case, the formulas of some special series are required, which are listed below. 

  • Base Step: This is the first step in which proving a statement holds true for the initial value.

  • Inductive Step: This is the second step in proving that the statement holds true for the nth iteration or number n, and r(n+1)th iteration or n+1 number.

The formulas used are:

  • For the sum of positive integers 1, 2, 3,...,n, 

P(n) = 1 + 2 + 3+...+ n = n (n + 1) / 2

  • For the sum of the square of positive integers 1, 2, 3,...,n is:

P(n) = 12 + 22 + 32 + 42 +…+ n2 = n (n + 1)(2n + 1) / 6

Competitive Exams after 12th Science

Access NCERT Solutions for Class 11 Mathematics Chapter 4 – Principle of Mathematics Induction

EXERCISE 4.1

1. Prove that following by using the principle of mathematical induction for all ${\text{n}} \in {\text{N}}$ :

$1 + 3 + {3^2} +  \ldots . + {3^{n - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):1 + 3 + {3^2} +  \ldots .. + {3^{ n  - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$

For $n = 1$ we have $P(1): = \dfrac{{\left( {{3^1} - 1} \right)}}{2} = \dfrac{{3 - 1}}{2} = \dfrac{2}{2} = 1$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $1 + 3 + {3^2} +  \ldots  + {3^{k - 1}} = \dfrac{{\left( {{3^k} - 1} \right)}}{2}$

We shall now prove that $P(k + 1)$ is true. Consider $1 + 3 + {3^2} +  \ldots  + {3^{k - 1}} + {3^{(k + 1) - 1}}$

$ = \left( {1 + 3 + {3^2} +  \ldots  + {3^{k - 1}}} \right) + {3^k}$

$ = \dfrac{{\left( {{3^k} - 1} \right)}}{2} + {3^k}\quad [$ Using $(i)]$

$ = \dfrac{{\left( {{3^k} - 1} \right) + {{2.3}^k}}}{2}$

$ = \dfrac{{(1 + 2){3^k} - 1}}{2}$

$ = \dfrac{{{{3.3}^k} - 1}}{2}$

$ = \dfrac{{{3^{k + 1}} - 1}}{2}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., ${\text{N}}$.


2. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

${1^3} + {2^3} + {3^3} +  \ldots  + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):{1^3} + {2^3} + {3^3} +  \ldots .. + {n^3} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$

For $n = 1$, we have $P(1):{1^3} = 1 = \left( {\dfrac{{1{{(1 + 1)}^2}}}{2}} \right) = {\left( {\dfrac{{1.2}}{2}} \right)^2} = {1^2} = 1$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., ${1^3} + {2^2} + {3^3} +  \ldots  +  + {k^3} - {\left( {\dfrac{{k(k + 1)}}{2}} \right)^2} \ldots  \ldots $

We shall now prove that $P(k + 1)$ is true. Consider ${1^3} + {2^3} + {3^3} +  \ldots  \ldots  + {k^3} + {(k + 1)^3}$

$ = \left( {{1^3} + {2^3} + {3^3} +  \ldots .. + {k^2}} \right) + {(k + 1)^3}$

$ = {\left( {\dfrac{{k(k + 1)}}{2}} \right)^2} + {(k + 1)^2}\quad [U\operatorname{sing} (i)]$

$ = \dfrac{{{k^2}{{(k + 1)}^2}}}{4} + {(k + 1)^3}$

$ = \dfrac{{{k^2}{{(k + 1)}^2} + 4{{(k + 1)}^3}}}{4}$

$ = \dfrac{{{{(k + 1)}^2}\left\{ {{k^2} + 4(k + 1)} \right\}}}{4}$

$ = \dfrac{{{{(k + 1)}^2}\left\{ {{k^2} + 4k + 4} \right\}}}{4}$

$ = \dfrac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}$

$ = \dfrac{{{{(k + 1)}^2}{{(k + 1 + 1)}^2}}}{4}$

$ = {\left( {\dfrac{{(k + 1)(k + 1 + 1)}}{2}} \right)^2}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


3. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

$1 + \dfrac{1}{{(1 + 2)}} + \dfrac{1}{{(1 + 2 + 3)}} +  \ldots . + \dfrac{1}{{(1 + 2 + 3 +  \ldots n)}} = \dfrac{{2n}}{{(n + 1)}}$

Ans: Let the given statement be $P(n)$. i.e.$P(n):1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} +  \ldots .. + \dfrac{1}{{1 + 2 + 3 +  \ldots n}} - \dfrac{{2n}}{{n + 1}}$

For $n = 1$, we have $P(1):1 = \dfrac{{2.1}}{{1 + 1}} = \dfrac{2}{2} = 1$ which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $1 + \dfrac{1}{{1 + 2}} +  \ldots  + \dfrac{1}{{1 + 2 + 3}} +  \ldots  + \dfrac{1}{{1 + 2 + 3 +  \ldots . + k}} = \dfrac{{2k}}{{k + 1}}.....(i)$

We shall now prove that $P(k + 1)$ is true. 

Consider, 

$1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} +  \ldots .. + \dfrac{1}{{1 + 2 + 3 +  \ldots .. + k}} + \dfrac{1}{{1 + 2 + 3 +  \ldots .. + k + (k + 1)}}$

$ = \left( {1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} +  \ldots  + \dfrac{1}{{1 + 2 + 3 +  \ldots  \ldots k}}} \right) + \dfrac{1}{{1 + 2 + 3 +  \ldots  + k + (k + 1)}}$

$ = \dfrac{{2k}}{{k + 1}} + \dfrac{1}{{1 + 2 + 3 +  \ldots  + k + (k + 1)}}$          [Using (i)]

$ = \left( {\dfrac{{2k}}{{k + 1}} + \dfrac{1}{{\left( {\dfrac{{(k + 1)(k + 1 + 1)}}{2}} \right)}}} \right)\quad \left[ {1 + 2 + 3 \ldots  + n = \dfrac{{n(n + 1)}}{2}} \right]$

$ = \dfrac{{2k}}{{(k + 1)}} + \dfrac{2}{{(k + 1)(k + 2)}}$

$ = \dfrac{2}{{(k + 1)}}\left( {k + \dfrac{1}{{k + 2}}} \right)$

$ = \dfrac{2}{{(k + 1)}}\left( {\dfrac{{{k^2} + 2k + 1}}{{k + 2}}} \right)$

$ = \dfrac{2}{{(k + 1)}}\left[ {\dfrac{{{{(k + 1)}^2}}}{{k + 2}}} \right]$

$ = \dfrac{{2(k + 1)}}{{(k + 2)}}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


4. Prove the following by using the principle of mathematical induction for all ${\text{n}} \in {\text{N}}$ :

$1.2.3 + 2.3.4 +  \ldots  + n(n + 1)(n + 2) = \dfrac{{n(n + 1)(n + 2)(n + 3)}}{4}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):1.2.3 + 2.3.4 +  \ldots  + n(n + 1)(n + 2) = \dfrac{{n(n + 1)(n + 2)(n + 3)}}{4}$

For $n = 1$, we have $P(1):1.2.3 = 6 = \dfrac{{1(1 + 1)(1 + 2)(1 + 3)}}{4} = \dfrac{{1.2 \cdot 3.4}}{4} = 6$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $1.2.3 + 2.3 \cdot 4 +  \ldots .. + k(k + 1)(k + 2) = \dfrac{{k(k + 1)(k + 2)(k + 3)}}{4}$

We shall now prove that $P(k + 1)$ is true. Consider $1.2.3 + 2.3.4 +  \ldots .. + k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3)$

$ = \{ 1.2.3 + 2.3.4 +  \ldots .. + k(k + 1)(k + 2)\}  + (k + 1)(k + 2) + (k + 3)$

$ = \dfrac{{k(k + 1)(k + 2)(k + 3)}}{4} + (k + 1)(k + 2)(k + 3)\quad [{\text{Using }}(i)]$

$ = (k + 1)(k + 2)(k + 3)\left( {\dfrac{k}{4} + 1} \right)$

$ = \dfrac{{(k + 1)(k + 2)(k + 3)(k + 4)}}{4}$

$ = \dfrac{{(k + 1)(k + 1 + 1)(k + 1 + 2)(k + 1 + 3)}}{4}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


5. Prove the following by using the principle of mathematical induction for all $n \in N$ :

$1.3 + {2.3^2} + {3.3^3} +  \ldots . + n \cdot {3^n} = \dfrac{{(2n - 1){3^{n + 1}} + 3}}{4}$

Ans: Let the given statement be $P(n)$, i.e.,

$P(n):1.3 + {2.3^2} + {3.3^7} +  \ldots  + n{3^n} = \dfrac{{(2n - 1){3^{n + 1}} + 3}}{4}$

For $n = 1$, we have $P(1):1.3 = 3 = \dfrac{{(2.1 - 1){3^{1 - 1}} + 3}}{4} = \dfrac{{{3^2} + 3}}{4} = \dfrac{{12}}{4} = 3$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $1.3 + {23^2} + {33^3} +  \ldots . + k{3^k} = \dfrac{{(2k - 1){3^{k + 1}} + 3}}{4}$

We shall now prove that $P(k + 1)$ is true. Consider $1.3 + {2.3^2} + {3.3^3} +  \ldots . + k \cdot {3^k} + (k + 1) \cdot {3^{k + 1}}$

$ = \left( {1.3 + 2 \cdot {3^2} + {{3.3}^3} +  \ldots .. + k \cdot {3^k}} \right) + (k + 1) \cdot {3^{x + 1}}$

$ = \dfrac{{(2k - 1){3^{k - 1}} + 3}}{4} + (k + 1){3^{k - 1}}\quad [{\text{Using}}(i)]$

$ = \dfrac{{(2k - 1){3^{k + 1}} + 3 + 4(k + 1){3^{k + 2}}}}{4}$

$ = \dfrac{{{3^{k + 1}}\{ 2k - 1 + 4(k + 1)\}  + 3}}{4}$

$ = \dfrac{{{3^{k + 1}}\{ 6k + 3\}  + 3}}{4}$

$ = \dfrac{{{3^{k + 1}} \cdot 3\{ 2k + 1\}  + 3}}{4}$

$ = \dfrac{{{3^{(k + 1) + 1}}\{ 2k + 1\}  + 3}}{4}$

$ = \dfrac{{\{ 2(k + 1) - 1){3^{k + 2\mid }} + 3}}{4}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement ${\text{P}}({\text{n}})$ is true for all natural numbers i.e., ${\text{N}}$.


6. Prove the following by using the principle of mathematical induction for all $n \in N$ :

$1.2 + 2.3 + 3.4 +  \ldots  + n(n + 1) = \left[ {\dfrac{{n(n + 1)(n + 2)}}{3}} \right]$

Ans: Let the given statement be $P(n)$, i.e.,

$P(n):1.2 + 2.3 + 3.4 +  \ldots  + n.(n + 1) = \left[ {\dfrac{{n(n + 1)(n + 2)}}{3}} \right]$

For $n = 1$, we have $P(1):1.2 = 2 = \dfrac{{1(1 + 1)(1 + 2)}}{3} = \dfrac{{1.2.3}}{3} = 2$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $1.2 + 2.3 + 3.4 +  \ldots .. + k \cdot (k + 1) = \left[ {\dfrac{{k(k + 1)(k + 2)}}{3}} \right] \ldots  \ldots ..(i)$

We shall now prove that $P(k + 1)$ is true. Consider $1.2 + 2 \cdot 3 + 3 \cdot 4 +  \ldots  + {k_ - }(k + 1) + (k + 1) \cdot (k + 2)$

$ = [12 + 2.3 + 3.4 +  \ldots .. + k \cdot (k + 1)] + (k + 1).(k + 2)$

$ = \dfrac{{k(k + 1)(k + 2)}}{3} + (k + 1)(k + 2)\quad [U\operatorname{sing} (i)]$

$ = (k + 1)(k + 2)\left( {\dfrac{k}{3} + 1} \right)$

$ = \dfrac{{(k + 1)(k + 2)(k + 3)}}{3}$

$ = \dfrac{{(k + 1)(k + 1 + 1)(k + 1 + 2)}}{3}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true.

Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


7. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

$1.3 + 3.5 + 5.7 +  \ldots .. + (2n - 1)(2n + 1) = \dfrac{{n\left( {4{n^2} + 6n - 1} \right)}}{3}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):1 \cdot 3 + 3.5 + 5.7 +  \ldots  + (2n - 1)(2n + 1) = \dfrac{{n\left( {4{n^2} + 6n - 1} \right)}}{3}$

For $n = 1$, we have $P(1):1.3 = 3 = \dfrac{{1\left( {{{4.1}^2} + 6.1 - 1} \right)}}{3} = \dfrac{{4 + 6 - 1}}{3} = \dfrac{9}{3} = 3$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e.,

$1.3 + 3.5 + 5.7 +  \ldots . + (2k - 1)(2k + 1) = \dfrac{{k\left( {4{k^2} + 6k - 1} \right)}}{3}.....(i)$

We shall now prove that $P(k + 1)$ is true. Consider $(1.3 + 3.5 + 5.7 +  \ldots .. + (2k - 1)(2k + 1)) + \{ (k + 1) - 1\} \{ 2(k + 1) + 1\} $

$ = \dfrac{{k\left( {4{k^2} + 6k - 1} \right)}}{3} + (2k + 2 - 1)(2k + 2 + 1)\quad [$ Using $(i)]$

$ = \dfrac{{k\left( {4{k^2} + 6k - 1} \right)}}{3} + (2k + 1)(2k + 3)$

$ = \dfrac{{k\left( {4{k^2} + 6k - 1} \right)}}{3} + \left( {4{k^2} + 8k + 3} \right)$

$ = \dfrac{{k\left( {4{k^2} + 6k - 1} \right) + 3\left( {4{k^2} + 8k + 3} \right)}}{3}$

$ = \dfrac{{4{k^3} + 6{k^2} - k + 12{k^2} + 24k + 9}}{3}$

$ = \dfrac{{4{k^2} + 18{k^2} + 23k + 9}}{3}$

$ = \dfrac{{4{k^3} + 14{k^2} + 9k + 4{k^2} + 14k + 9}}{3}$

$ = \dfrac{{k\left( {4{k^2} + 14k + 9} \right) + 1\left( {4{k^2} + 14k + 9} \right)}}{3}$

$ = \dfrac{{(k + 1)\left( {4{k^2} + 14k + 9} \right)}}{3}$

$ = \dfrac{{(k + 1)\left\{ {4{k^2} + 8k + 4 + 6k + 6 - 1} \right\}}}{3}$

$ = \dfrac{{(k + 1)\left\{ {4\left( {{k^2} + 2k + 1} \right) + 6(k + 1) - 1} \right\}}}{3}$

$ = \dfrac{{(k + 1)\left\{ {4{{(k + 1)}^2} + 6(k + 1) - 1} \right\}}}{3}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


8. Prove the following by using the principle of mathematical induction for all $n \in N$ :

$1.2 + 2 \cdot {2^2} + {3.2^2} +  \ldots  + n \cdot {2^n} = (n - 1){2^{n + 1}} + 2$

Ans: Let the given statement be $P(n)$, i.e., $P(n):1.2 + 2 \cdot {2^2} + {32^2} +  \ldots  + n{2^2} = (n - 1){2^{n + 1}} + 2$

For $n = 1$, we have $P(1):1.2 = 2 = (1 - 1){2^{1 + 1}} + 2 = 0 + 2 = 2$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e.. $1.2 + {2.2^2} + {3.2^2} +  \ldots  + k \cdot {2^k} = (k - 1){2^{k + 1}} + 2 \ldots .(i)$

We shall now prove that $P(k + 1)$ is true. Consider $\left\{ {1.2 + {{2.2}^2} + {{3.2}^2} +  \ldots . + k \cdot {2^*}} \right\} + (k + 1) \cdot {2^{k + 1}}$

$ = (k - 1){2^{k + t}} + 2 + (k + 1){2^{k - 2}}$

$ = {2^{k + 1}}\{ (k - 1) + (k + 1)\}  + 2$

$ = {2^{k + 1}} \cdot 2k + 2$

$ = k \cdot {2^{(k + 1) + 1}} + 2$

$ = \{ (k + 1) - 1\} {2^{(k + 1) + 1}} + 2$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


9. Prove the following by using the principle of mathematical induction for all ${\text{n}} \in {\text{N}}$ :

$\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} +  \ldots  \ldots  + \dfrac{1}{{{2^n}}} - 1 - \dfrac{1}{{{2^n}}}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} +  \ldots .. + \dfrac{1}{{{2^n}}} = 1 - \dfrac{1}{{{2^8}}}$

For $n = 1$, we have $P(1):\dfrac{1}{2} = 1 - \dfrac{1}{{{2^1}}} = \dfrac{1}{2}$, which is true.

Let $P(k)$ be true for some positive integer ${k_1}$ i.e., $\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} +  \ldots . + \dfrac{1}{{{2^k}}} = 1 - \dfrac{1}{{{2^k}}} \ldots ..(i)$

We shall now prove that $P(k + 1)$ is true. Consider $\left( {\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} +  \ldots .. + \dfrac{1}{{{2^k}}}} \right) + \dfrac{1}{{{2^{k - 2}}}}$

$ = \left( {1 - \dfrac{1}{{{2^k}}}} \right) + \dfrac{1}{{{2^{k + 1}}}}\quad $ [Using (i)]

$ = 1 - \dfrac{1}{{{2^k}}}\left( {1 - \dfrac{1}{2}} \right)$

$ = 1 - \dfrac{1}{{{2^k}}}\left( {\dfrac{1}{2}} \right)$

$ = 1 - \dfrac{1}{{{2^{k - t}}}}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


10. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

$\dfrac{1}{{2.5}} + \dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} +  \ldots .. + \dfrac{1}{{(3n - 1)(3n + 2)}} = \dfrac{n}{{(6n + 4)}}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):\dfrac{1}{{2.5}} + \dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} +  \ldots  \ldots  + \dfrac{1}{{(3n - 1)(3n + 2)}} = \dfrac{n}{{(6n + 4)}}$

For $n = 1$, we have $P(1) = \dfrac{1}{{2.5}} = \dfrac{1}{{10}} = \dfrac{1}{{6.1 + 4}} = \dfrac{1}{{10}}$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e.. $\dfrac{1}{{2.5}} + \dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} +  \ldots .. + \dfrac{1}{{(3k + 1)(3k + 2)}} = \dfrac{k}{{6k + 4}} \ldots ..(i)$

We shall now prove that $P(k + 1)$ is true. Consider $\dfrac{1}{{2.5}} + \dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} +  \ldots . + \dfrac{1}{{(3k + 1)(3k + 2)}} + \dfrac{1}{{\{ 3(k + 1) - 1\} \{ 3(k + 1) + 2\} }}$

$ = \dfrac{k}{{6k + 4}} + \dfrac{1}{{(3k + 3 - 1)(3k + 3 + 2)}}$        [${\text{Using}}(i)$]

$ = \dfrac{k}{{6k + 4}} + \dfrac{1}{{(3k + 2)(3k + 5)}}$

$ = \dfrac{k}{{2(3k + 2)}} + \dfrac{1}{{(3k + 2)(3k + 5)}}$

$ = \dfrac{1}{{(3k + 2)}}\left( {\dfrac{k}{2} + \dfrac{1}{{3k + 5}}} \right)$

$ = \dfrac{1}{{(3k + 2)}}\left( {\dfrac{{k(3k + 5) + 2}}{{2(3k + 5)}}} \right)$

$ = \dfrac{1}{{(3k + 2)}}\left( {\dfrac{{3{k^2} + 5k + 2}}{{2(3k + 5)}}} \right)$

$ = \dfrac{1}{{(3k + 2)}}\left( {\dfrac{{(3k + 2)(k + 1)}}{{2(3k + 5)}}} \right)$

$ = \dfrac{{(k + 1)}}{{6k + 10}}$

$ = \dfrac{{(k + 1)}}{{6(k + 1) + 4}}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e, ${\text{N}}$.


11. Prove the following by using the principle of mathematical induction for all $n \in N$ :

$\dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3 \cdot 4}} + \dfrac{1}{{3.4.5}} +  \ldots . + \dfrac{1}{{n(n + 1)(n + 2)}} = \dfrac{{n(n + 3)}}{{4(n + 1)(n + 2)}}$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):\dfrac{1}{{12.3}} + \dfrac{1}{{23.4}} + \dfrac{1}{{3.4.5}} +  \ldots . + \dfrac{1}{{n(n + 1)(n + 2)}} = \dfrac{{n(n + 3)}}{{4(n + 1)(n + 2)}}$

For $n = 1$, we have $P(1) = \dfrac{1}{{1 \cdot 2 - 3}} - \dfrac{{1 \cdot (1 + 3)}}{{4(1 + 1)(1 + 2)}} = \dfrac{{1 \cdot 4}}{{4 \cdot 2 \cdot 3}} - \dfrac{1}{{1 \cdot 2 - 3}}$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e.. $\dfrac{1}{{1.2 \cdot 3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} +  \ldots  \ldots  + \dfrac{1}{{k(k + 1)(k + 2)}} = \dfrac{{k(k + 3)}}{{4(k + 1)(k + 2)}}.....(i)$

We shall now prove that $P(k + 1)$ is true. Consider $\left[ {\dfrac{1}{{1 \cdot 2 - 3}} + \dfrac{1}{{2 \cdot 3 - 4}} + \dfrac{1}{{3 \cdot 4 \cdot 5}} +  \ldots .. + \dfrac{1}{{k(k + 1)(k + 2)}}} \right] + \dfrac{1}{{(k + 1)(k + 2)(k + 3)}}$

$ = \dfrac{{k(k + 3)}}{{4(k + 1)(k + 2)}} + \dfrac{1}{{(k + 1)(k + 2)(k + 3)}}$      [Using (i)]

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{k(k + 3)}}{4} + \dfrac{1}{{k + 3}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{k{{(k + 3)}^2} + 4}}{{4(k + 3)}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{k\left( {{k^2} + 6k + 9} \right) + 4}}{{4(k + 3)}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{{k^3} + 6{k^2} + 9k + 4}}{{4(k + 3)}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{{k^3} + 2{k^2} + k + 4{k^2} + 8k + 4}}{{4(k + 3)}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{k\left( {{k^2} + 2k + 1} \right) + 4\left( {{k^2} + 2k + 1} \right)}}{{4(k + 3)}}} \right\}$

$ = \dfrac{1}{{(k + 1)(k + 2)}}\left\{ {\dfrac{{k{{(k + 1)}^2} + 4{{(k + 1)}^2}}}{{4(k + 3)}}} \right\}$

$ = \dfrac{{{{(k + 1)}^2}(k + 4)}}{{4(k + 1)(k + 2)(k + 3)}}$

$ = \dfrac{{(k + 1)\{ (k + 1) + 3\} }}{{4\{ (k + 1) + 1\} \{ (k + 1) + 2\} }}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


12. Prove the following by using the principle of mathematical induction for all 

${\text{n}} \in {\text{N}}$ :${\text{a}} + {\text{ar}} + {\text{a}}{{\text{r}}^2} +  \ldots .. + {\text{a}}{{\text{r}}^{n - 1}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}}$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):a + ar + a{r^2} +  \ldots .. + a{r^{n - 1}} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$

For $n = 1$, we have $P(1):a = \dfrac{{a\left( {{r^1} - 1} \right)}}{{(r - 1)}} = a$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., ${\text{a}} + {\text{ar}} + {\text{a}}{{\text{r}}^2} +  \ldots  \ldots  + {\text{a}}{{\text{r}}^{k - 1}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{k}}} - 1} \right)}}{{{\text{r}} - 1}} \ldots  \ldots ({\text{i}})$

We shall now prove that $P(k + 1)$ is true.

Consider $\left\{ {a + ar + a{r^2} +  \ldots .. + a{r^{k - 1}}} \right\} + a{r^{(k + 2) - 1}}$

$ = \dfrac{{a\left( {{r^k} - 1} \right)}}{{r - 1}} + a{r^*}\quad [{\text{using}}(i)]$

$ = \dfrac{{a\left( {{r^k} - 1} \right) + a{r^k}(r - 1)}}{{r - 1}}$

$ = \dfrac{{a\left( {{r^k} - 1} \right) + a{r^{k - 1}} - a{r^k}}}{{r - 1}}$

$ = \dfrac{{a{r^k} - a + a{r^{k + 1}} - a{r^k}}}{{r - 1}}$

$ = \dfrac{{a{r^{k + 1}} - a}}{{r - 1}}$

$ = \dfrac{{a\left( {{r^{k + 1}} - 1} \right)}}{{r - 1}}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


13. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

$\left( {1 + \dfrac{3}{1}} \right)\left( {1 + \dfrac{5}{4}} \right)\left( {1 + \dfrac{7}{9}} \right) \ldots \left( {1 + \dfrac{{(2n + 1)}}{{{n^2}}}} \right) = {(n + 1)^2}$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):\left( {1 + \dfrac{3}{1}} \right)\left( {1 + \dfrac{5}{4}} \right)\left( {1 + \dfrac{7}{9}} \right) \ldots \left( {1 + \dfrac{{(2n + 1)}}{{{n^2}}}} \right) = {(n + 1)^2}$

For $n = 1$, we have $P(1):\left( {1 + \dfrac{3}{1}} \right) = 4 = {(1 + 1)^2} = {2^2} = 4$, which is true.

Let $P(k)$ be true for some positive integer ${k_t}$ i.e.. $\left( {1 + \dfrac{3}{1}} \right)\left( {1 + \dfrac{5}{4}} \right)\left( {1 + \dfrac{7}{9}} \right) \ldots .\left( {1 + \dfrac{{(2k + 1)}}{{{k^2}}}} \right) = {(k + 1)^2} \ldots  \ldots (1)$

We shall now prove that $P(k + 1)$ is true. Consider $\left[ {\left( {1 + \dfrac{3}{1}} \right)\left( {1 + \dfrac{5}{4}} \right)\left( {1 + \dfrac{7}{9}} \right) \ldots \left( {1 + \dfrac{{(2k + 1)}}{{{k^2}}}} \right)} \right]\left\{ {1 + \dfrac{{\{ 2(k + 1) + 1\} }}{{{{(k + 1)}^2}}}} \right\}$

\[ = {(k + 1)^2}\left( {1 + \dfrac{{2(k + 1) + 1}}{{{{(k + 1)}^2}}}} \right)\quad [{\text{Using}}(1)]\]

$ = {(k + 1)^2}\left[ {\dfrac{{{{(k + 1)}^2} + 2(k + 1) + 1}}{{{{(k + 1)}^2}}}} \right]$

$ = {(k + 1)^2} + 2(k + 1) + 1$

$ = {\{ (k + 1) + 1\} ^2}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


14. Prove the following by using principle of mathematical induction for all $n \in \mathbb{N}$ :

$\left( {1 + \dfrac{1}{1}} \right)\left( {1 + \dfrac{1}{2}} \right)\left( {1 + \dfrac{1}{3}} \right) \ldots \left( {1 + \dfrac{1}{n}} \right) = (n + 1)$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):\left( {1 + \dfrac{1}{1}} \right)\left( {1 + \dfrac{1}{2}} \right)\left( {1 + \dfrac{1}{3}} \right) \ldots .\left( {1 + \dfrac{1}{n}} \right) = (n + 1)$

For $n = 1$, we have $P(1):\left( {1 + \dfrac{1}{1}} \right) = 2 = (1 + 1)$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $P(k):\left( {1 + \dfrac{1}{1}} \right)\left( {1 + \dfrac{1}{2}} \right)\left( {1 + \dfrac{1}{3}} \right) \ldots \left( {1 + \dfrac{1}{k}} \right) = (k + 1) \ldots  \ldots .(1)$

We shall now prove that $P(k + 1)$ is true. Consider $\left[ {\left( {1 + \dfrac{1}{1}} \right)\left( {1 + \dfrac{1}{2}} \right)\left( {1 + \dfrac{1}{3}} \right) \ldots \left( {1 + \dfrac{1}{k}} \right)} \right]\left( {1 + \dfrac{1}{{k + 1}}} \right)$

$ = (k + 1)\left( {1 + \dfrac{1}{{k + 1}}} \right)$     [Using (1)]

$ = (k + 1)\left[ {\dfrac{{(k + 1) + 1}}{{(k + 1)}}} \right]$

$ = (k + 1) + 1$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


15. Prove the following by using the principle of mathematical induction for all $n \in N$ :

${1^2} + {3^2} + {5^2} +  \ldots . + {(2n - 1)^2} = \dfrac{{n(2n - 1)(2n + 1)}}{3}$

Ans: Let the given statement be $P(n)$, i.e.. $P(n):{1^2} + {3^2} + {5^2} +  \ldots . + {(2n - 1)^2} = \dfrac{{n(2n - 1)(2n + 1)}}{3}$

For $n = 1$, we have $P(1) = {1^2} = 1 = \dfrac{{1(2.1 - 1)(21 + 1)}}{3} = \dfrac{{1.1.3}}{3} = 1$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e.. $P(k) = {1^2} + {3^2} + {5^2} +  \ldots  + {(2k - 1)^2} = \dfrac{{k(2k - 1)(2k + 1)}}{3}$

We shall now prove that $P(k + 1)$ is true. 

Consider $\left\{ {{1^2} + {3^2} + {5^2} +  \ldots .. + {{(2k - 1)}^2}} \right\} + {\{ 2(k + 1) - 1\} ^2}$

$ = \dfrac{{k(2k - 1)(2k + 1)}}{3} + {(2k + 2 - 1)^2}\quad {\text{[Using(1)]}}$

$ = \dfrac{{k(2k - 1)(2k + 1)}}{3} + {(2k + 1)^2}$

$ = \dfrac{{2(2k - 1)(2k + 1) + 3{{(2k + 1)}^2}}}{3}$

$ = \dfrac{{(2k + 1)\{ k(2k - 1) + 3(2k + 1)\} }}{3}$

$ = \dfrac{{(2k + 1)\left( {2{k^2} - k + 6k + 3} \right)}}{3}$

$ = \dfrac{{(2k + 1)\left\{ {2{k^2} + 5k + 3y} \right\}}}{3}$

$ = \dfrac{{(2k + 1)\left\{ {2{k^2} + 2k + 3k + 3} \right\}}}{3}$

$ = \dfrac{{(2k + 1)\{ 2k(k + 1) + 3(k + 1)\} }}{3}$

$ = \dfrac{{(2k + 1)(k + 1)(2k + 3)}}{3}$

$ = \dfrac{{(k + 1)\{ 2(k + 1) - 1\} \{ 2(k + 1) + 1\} }}{3}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


16. Prove the following by using the principle of mathematical induction for all $n \in N$ :

$\dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7.10}} +  \ldots  + \dfrac{1}{{(3n - 2)(3n + 1)}} = \dfrac{n}{{(3n + 1)}}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):\dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7 \cdot 10}} +  \ldots  + \dfrac{1}{{(3n - 2)(3n + 1)}} = \dfrac{n}{{(3n + 1)}}$

For $n = 1$, we have $P(1) = \dfrac{1}{{1.4}} = \dfrac{1}{{3.1 + 1}} = \dfrac{1}{4} + \dfrac{1}{{1.4}}$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $P(k) = \dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7.10}} +  \ldots  + \dfrac{1}{{(3k - 2)(3k + 1)}} = \dfrac{k}{{3k + 1}}$

We shall now prove that $P(k + 1)$ is true. Consider $\left\{ {\dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7.10}} +  \ldots . + \dfrac{1}{{(3k - 2)(3k + 1)}}} \right\} + \dfrac{1}{{\{ 3(k + 1) - 2\} (3(k + 1) + 1\} }}$

$ = \dfrac{k}{{3k + 1}} + \dfrac{1}{{(3k + 1)(3k + 4)}}$

${\text{[Using(1)]}}$

$ = \dfrac{1}{{(3k + 1)}}\left\{ {k + \dfrac{1}{{(3k + 4)}}} \right\}$

$ = \dfrac{1}{{(3k + 1)}}\left\{ {\dfrac{{k(3k + 4) + 1}}{{(3k + 4)}}} \right\}$

$ - \dfrac{1}{{(3k + 1)}}\left\{ {\dfrac{{3{k^2} + 4k + 1}}{{(3k + 4)}}} \right\}$

$ = \dfrac{1}{{(3k + 1)}}\left\{ {\dfrac{{3{k^2} + 3k + k + 1}}{{(3k + 4)}}} \right\}$

$ - \dfrac{{(3k + 1)(k + 1)}}{{(3k + 1)(3k + 4)}}$

$ - \dfrac{{(k + 1)}}{{3(k + 1) + 1}}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


17.  Prove the following by using the principle of mathematical induction for all $n \in {\text{N}}$ :

$\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} +  \ldots  \ldots  + \dfrac{1}{{(2n + 1)(2n + 3)}} = \dfrac{n}{{3(2n + 3)}}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} +  \ldots  \ldots  + \dfrac{1}{{(2n + 1)(2n + 3)}} = \dfrac{n}{{3(2n + 3)}}$

For $n = 1$, we have $P(1):\dfrac{1}{{3.5}} = \dfrac{1}{{3(2.1 + 3)}} = \dfrac{1}{{3.5}}$, which is true.

Let $P(k)$ be true for some positive integer $k$, i.e., $P(k):\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} +  \ldots . + \dfrac{1}{{(2k + 1)(2k + 3)}} = \dfrac{k}{{3(2k + 3)}} \ldots .(1)$

We shall now prove that $P(k + 1)$ is true. 

Consider $\left[ {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} +  \ldots . + \dfrac{1}{{(2k + 1)(2k + 3)}}} \right] + \dfrac{1}{{\{ 2(k + 1) + 1\} \{ 2(k + 1) + 3\} }} = \dfrac{k}{{3(2k + 3)}} + \dfrac{1}{{(2k + 3)(2k + 5)}}$

$[{\text{Using(1)}}]$

$ = \dfrac{1}{{(2k + 3)}}\left[ {\dfrac{k}{3} + \dfrac{1}{{(2k + 5)}}} \right]$

$ = \dfrac{1}{{(2k + 3)}}\left[ {\dfrac{{k(2k + 5) + 3}}{{3(2k + 5)}}} \right]$

$ = \dfrac{1}{{(2k + 3)}}\left[ {\dfrac{{2{k^2} + 5k + 3}}{{3(2k + 5)}}} \right]$

$ = \dfrac{1}{{(2k + 3)}}\left[ {\dfrac{{2{k^2} + 2k + 3k + 3}}{{3(2k + 5)}}} \right]$

$ - \dfrac{1}{{(2k + 3)}}\left[ {\dfrac{{2k(k + 1) + 3(k + 1)}}{{3(2k + 5)}}} \right]$

$ = \dfrac{{(k + 1)(2k + 3)}}{{3(2k + 3)(2k + 5)}}$

$ = \dfrac{{(k + 1)}}{{3\{ 2(k + 1) + 3\} }}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


18. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}:$ $1 + 2 + 3 +  \ldots  + n < \dfrac{1}{8}{(2n + 1)^2}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):1 + 2 + 3 +  \ldots  + n < \dfrac{1}{8}{(2n + 1)^2}$

It can be noted that $P(n)$ is true for $n = 1$ since $1 < \dfrac{1}{8}{(2.1 + 1)^2} = \dfrac{9}{8}$

Let $P(k)$ be true for some positive integer $k$, i.e., $1 + 2 +  \ldots . + k < \dfrac{1}{8}{(2k + 1)^2} \ldots ..(1)$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider $(1 + 2 +  \ldots  + k) + (k + 1) < \dfrac{1}{8}{(2k + 1)^2} + (k + 1)\quad $ [Using (1)]

$ < \dfrac{1}{8}\left\{ {{{(2k + 1)}^2} + 8(k + 1)} \right\}$

$ < \dfrac{1}{8}\left\{ {4{k^2} + 4k + 1 + 8k + 8} \right\}$

$ < \dfrac{1}{8}\left\{ {4{k^2} + 12k + 9} \right\}$

$ < \dfrac{1}{8}{(2k + 3)^2}$

$ < \dfrac{1}{8}{\{ 2(k + 1) + 1\} ^2}$

Hence, $(1 + 2 + 3 +  \ldots . + k) + (k + 1) < \dfrac{1}{8}{(2k + 1)^2} + (k + 1)$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


19. Prove the following by using the principle of mathematical induction for all ${\text{n}} \in {\text{N}}$ :

$n(n + 1)(n + 5)$ is a multiple of 3

Ans: Let the given statement be $P(n)$, i.e.. $P(n):n(n + 1)(n + 5)$, which is a multiple of 3 .

It can be noted that $P(n)$ is true for $n = 1$ since $1(1 + 1)(1 + 5) = 12$, which is a multiple of 3.

Let $P(k)$ be true for some positive integer $k$, i.e., $k(k + 1)(k + 5)$ is a multiple of 3 $\therefore k(k + 1)(k + 5) = 3m$, where $m \in N$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider $(k + 1)\{ (k + 1) + 1\} \{ (k + 1) + 5\} $

$ = (k + 1)(k + 2)\{ (k + 5) + 1\} $

$ = (k + 1)(k + 2)(k + 5) + (k + 1)(k + 2)$

$ = \{ k(k + 1)(k + 5) + 2(k + 1)(k + 5)\}  + (k + 1)(k + 2)$

$ = 3m + (k + 1)\{ 2(k + 5) + (k + 2)\} $

$ = 3m + (k + 1)\{ 2k + 10 + k + 2\} $

$ = 3m + (k + 1)\{ 3k + 12\} $

$ = 3m + 3(k + 1)\{ k + 4\} $

$ = 3\{ m + (k + 1)(k + 4)\}  = 3 \times q$. where $q = \{ m + (k + 1)(k + 4)\} $ is some natural number. Therefore, $(k + 1)\{ (k + 1) + 1\} \{ (k + 1) + 5\} $ is a multiple of 3 . Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


20. Prove the following by using the principle of mathematical induction for all $n \in {\text{N}}$ :

${10^{2n - 1}} + 1$ is divisible by 11

Ans: Let the given statement be $P(n)$, i.e., $P(n):{10^{2n - 1}} + 1$ is divisible by 11 It can be observed that $P(n)$ is true for $n = 1$ Since $P(1) = {10^{2.1 - 1}} + 1 = 11$, which is divisible by 11 . Let $P(k)$ be true for some positive integer $k$,

i.e., ${10^{2k - 1}} + 1$ is divisible by 11 . $\therefore {10^{2k - 1}} + 1 = 11\;{\text{m}}$, where $m \in N$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider ${10^{2(k + 1) - 1}} + 1$

$ = {10^{2k + 2 - 1}} + 1$

$ = {10^{2k - 1}} + 1$

$ = {10^2}\left( {{{10}^{2t - 1}} + 1 - 1} \right) + 1$

$ = {10^2}\left( {{{10}^{2k - 1}} + 1} \right) - {10^2} + 1$

$ = {10^2}.11\;{\text{m}} - 100 + 1\quad [$ Using $(1)]$

$ = 100 \times 11\;{\text{m}} - 99$

$ = 11(100m - 9)$

$ = 11{\mathbf{r}}$, where $r = (100m - 9)$ is some natural number Therefore, ${10^{2(k + 1) - 1}} + 1$ is divisible by 11 . Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


21. Prove the following by using the principle of mathematical induction for all ${\text{n}} \in {\text{N}}$ :

${x^{2x}} - {y^{2 = }}$ is divisible by $x + y.$

Ans: Let the given statement be $P(n)$, i.e., $P(n):{x^{2n}} - {y^{2n}}$ is divisible by $x + y$ It can be observed that $P(n)$ is true for $n = 1$.

This is so because ${x^{2 - 1}} - {y^{2 - 4}} = {x^2} - {y^2} = (x + y)(x - y)$ is divisible by $(x + y)$. Let $P(k)$ be true for some positive integer ${k_1}$ i.e.. ${x^{3x}} - {y^{2k}}$ is divisible by $x + y$.

$\therefore $ Let ${x^{2k}} - {y^{2x}} = m(x + y)$, where $m \in N \ldots .(1)$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider ${x^{2x + 1\mid  - {y^4} - }}$

$ = {x^{2x}} - {x^2} - {y^{2x}} - {y^2}$

$ = {x^2}\left( {{x^{2k}} - {y^{2k}} + {y^{7x}}} \right) - {y^{2k}} - {y^2}$

$ = {x^2}\left\{ {m(x + y) + {y^{2k}}} \right\} - {y^{2k}} \cdot {y^2}\quad {\text{[Using(1)}}]$

$ = m(x + y){x^2} + {y^{2k}} \cdot {x^2} - {y^{2x}} - {y^2}$

$ = m(x + y){x^2} + {y^{2k}}\left( {{x^2} - {y^2}} \right)$

$ = m(x + y){x^2} + {y^{2x}}(x + y)(x - y)$

$ = (x + y)\left\{ {m{x^2} + {y^{2k}}(x - y)} \right\}$, which is a factor of $(x + y)$. Thus, $P(k + 1)$ is true whenever $P(k)$ is true.

Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e.. ${\text{N}}$.


22. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}:{3^{2n + 2}} - 8n - 9$ is divisible by 8

Ans: Let the given statement be $P(n)$, i.e., $P(n):{3^{2n + 2}} - 8n - 9$ is divisible by 8 . It can be observed that $P(n)$ is true for $n = 1$ Since ${3^{2 \cdot 1 - 2}} - 8 \times 1 - 9 = 64$, which is divisible by 8 . Let $P(k)$ be true for some positive integer

$k$, i.e, ${3^{2k + 2}} - 8k - 9$ is divisible by 8 . $\therefore {3^{2t + 2}} - 8k - 9 = 8\;{\text{ms}}$ where $m \in N \ldots  \ldots .(1)$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider ${3^{\alpha (k + 1) + 2}} - 8(k + 1) - 9$

${3^{2k + 2}} - {3^2} - 8k - 8 - 9$

$ = {3^2}\left( {{3^{2k - 2}} - 8k - 9 + 8k + 9} \right) - 8k - 17$

$ = {3^2}\left( {{3^{2k + 2}} - 8k - 9} \right) + {3^2}(8k + 9) - 8k - 17$

$ = 9.8m + 9(8k + 9) - 8k - 17$

$ = 9.8m + 72k + 81 - 8k - 17$

$ = 9.8m + 64k + 64$

$ = 8(9m + 8k + 8)$

$ = 8r$, where $r = (9m + 8k + 8)$ is a natural number Therefore, ${3^{2(k - 2) - 2}} - 8(k + 1) - 9$ is divisible by 8 . Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all numbers i.e. ${\text{N}}$.


23. Prove the following by using the principle of mathematical induction for all $n \in {\text{N}}$ :

${41^n} - {14^n}$ is a multiple of 27.

Ans: Let the given statement be $P(n)$. i.e., $P(n):{41^*} - {14^*}$ is a multiple of 27

It can be observed that $P(n)$ is true for $n = 1$ Since ${41^1} - {14^1} = 27$, which is a multiple of 27. Let $P(k)$ be true for some positive integer $k$, i.e.. ${41^{\text{k}}} - {14^{\text{k}}}$ is a multiple of 27

$\therefore {41^k} - {14^k} = 27\;{\text{m}},m \in \mathbb{N} \ldots  \ldots (1)$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider ${41^{k + 1}} - {14^{k + 1}}$

$ = {41^k} \cdot 41 - {14^k} \cdot 14$

$ = 41\left( {{{41}^*} - {{14}^k} + {{14}^k}} \right) - {14^k} \cdot 14$

$ = 41.27\;{\text{m}} + {14^k}(41 - 14)$

$ = 41.27\;{\text{m}} + {27.14^{\text{k}}}$

$ = 27\left( {41m - {{14}^k}} \right)$

$ = 27 \times {\mathbf{r}}$, where $r = \left( {41m - {{14}^k}} \right)$ is a natural number. Therefore, ${41^{k + 1}} - {14^{k + 1}}$ is a multiple of 27 . Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


24. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$ :

$(2n + 7) < {(n + 3)^2}$

Ans: Let the given statement be $P(n)$, i.e., $P(n):(2n + 7) < {(n + 3)^2}$

It can be observed that $P(n)$ is true for $n = 1$ Since $2.1 + 7 = 9 < {(1 + 3)^2} = 16$, which is true. Let $P(k)$ be true for some positive integer ${k_1}$ i.e., $(2k + 7) < {(k + 3)^2} \ldots  \ldots (1)$

We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. Consider $\{ 2(k + 1) + 7\}  = (2k + 7) + 2$

$\therefore \{ 2(k + 1) + 7\}  = (2k + 7) + 2 < {(k + 3)^2} + 2\quad [$ Using $(1)]$

$2(k + 1) + 7 < {k^2} + 6k + 9 + 2$

$2(k + 1) + 7 < {k^2} + 6k + 11$

Now, ${k^2} + 6k + 11 < {k^2} + 8k + 16$

$\therefore 2(k + 1) + 7 < {(k + 4)^2}$

$2(k + 1) + 7 < {\{ (k + 1) + 3\} ^2}$

Thus, $P(k + 1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., ${\text{N}}$.


NCERT Solutions for Class 11 Maths Chapters


NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction Exercise 4.1

Opting for the NCERT solutions for Ex 4.1 Class 11 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 4.1 Class 11 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 11 students who are thorough with all the concepts from the Subject Principle of Mathematical Induction textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 11 Maths Chapter 4 Exercise 4.1 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 11 Maths Chapter 4 Exercise 4.1, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.

Do not delay any more. Download the NCERT solutions for Class 11 Maths Chapter 4 Exercise 4.1 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

FAQs on NCERT Solutions for Class 11 Maths Chapter 4 - Exercise

1. What will I learn in this chapter?

Mathematical Induction is a specific technique that is primarily used to prove a given statement or a theorem. The important section of this method is that the theorem should always be true for every natural number given. It is one of the useful methods as you do not have to solve an equation or a statement for every possible value it could take.


You will get familiar with the following pointers while studying Mathematical Induction:

  • Proving the given illustration or statement is the primary motive.

  • The proof should always stand true for all the values consisting of natural numbers.

  • The statement should be true for the initial value as well.

  • The statement should be true for all other values till nth iteration.

  • Every step involved in the proof must be justified and has to be true.

2. What are the Principles of Mathematical Induction.

There are two principles of Mathematical Induction, which you need to know right from the beginning. They are:

  • Deduction

  • Induction

This chapter deals with the latter principle. You shall be further introduced to the former principle which is based on a generalisation of certain specific instances, while the latter is the opposite of it. Induction is more like particular instances of generalisation. 


With the Mathematical Inductions concept, solving numerically related to series becomes very easy and convenient, and as a result, it has extensive scopes of applications in real life as well. Computer science is one of the most renowned spheres, where it is widely used.

3. How many questions are there in exercise 4.1 and what are the topics that are covered in this exercise?

There are a total of 24 questions in exercise 4.1 and the main topics that are covered in this particular exercise are: 

  1. Motivation

  2. The Principle of Mathematical Induction: Let us consider, there is a statement given which is P(n) involving the natural number n such that

  • The statement will be true if n = 1, i.e., if P(1) is true,

  • Suppose, if the given statement is true for n = k (where k is a positive integer), then the given statement is also true for n = k + 1, i.e., the truth of P(k) implies the truth of P(k+1).

4. How do NCERT solutions of Vedantu help me in scoring more marks?

Our innovative learning methodology along with the smart and easy study techniques will make your learning methods more fun, interesting, interactive and in a properly planned way. Our NCERT Solutions for Class 11 Maths have been carefully designed to help you develop your knowledge base which will ultimately improve your retention rate. 


All the important and necessary concepts have been covered by us in order to make your learning much easier for exam preparation. They have been crafted from the examination point of view. Our solutions are framed by our experts and they have covered each and every part of the chapter also the exercise questions which are covered at the end of the chapter.

5. What are key takeaways of NCERT Solutions Class 11 Maths Chapter 4?

If you want to get good results in Class 11 or prepare for competitive examinations like JEE or NEET, you should refer to NCERT textbooks and solutions.  These are the best options when it comes to last-minute revisions. They are written in a detailed manner. They are also written in  simple language, which makes it easy for students to understand the concepts. 

6. What concepts can I learn using the NCERT Solutions for Class 11 Maths Chapter 4?

As per the recommendations of CBSE and teachers, students must refer to NCERT solutions. They are considered the best study material in terms of explaining the concepts and practice questions. Class 11 Maths Chapter 4 fairly covers all the important topics such as meaning and applications of mathematical induction, motivation, illustration, etc. The questions in NCERT Solutions might help you gain a good grasp of the subject.

7. Where to find the Best NCERT Solutions for Class 11 Online?

Vedantu provides detailed and finely curated NCERT Solutions. These solutions are prepared by our team of professionals keeping the CBSE curriculum in mind. Vedantu offers online PDF downloads of NCERT Solutions for Class 11 for free. 

8. How can I download the NCERT solutions for Class 11 in PDF format?

NCERT Solutions for Class 11 provided on the website and the app of Vedantu ensures to clear all the concepts given in the textbooks of Class 11. You can download these free NCERT Solutions for Class 11 Maths in PDFs from Vedantu. These PDFs are totally free of cost, which means anyone can access them. We ensure to provide students with the best of all so that they can rely on us for their exam preparations. 

9. How much time will it take to solve Class 11 Maths Chapter 4 Exercise 4.1?

Since there are 24 questions in Class 11 Maths Chapter 4 Exercise 4.1, it depends on how much the student is clear with the concepts. The concepts covered in Exercise 4.1 are motivation and principles of mathematical induction. It might take a day or two to complete the exercise with proper understanding. If you need any help, you can refer to NCERT Solutions for Class 11 Chapter 4 Exercise 4.1 available at  Vedantu.