
You and five friends are posing for a photograph. In how many ways can you pose in a line for a photograph?
Answer
525.9k+ views
Hint: To find in how many ways you can pose in a line for a photograph given that there are 6 people (including you), we will assume that there are N people and N different positions. We have to arrange people in a line. We know that the first person can have any of the N places, the second person can have any of the (N-1) places and so on till the last person. To obtain the number of ways, we have to multiply all the outcomes we get and then substitute N as 6.
Complete step by step solution:
We need to find out how many ways you can pose in a line for a photograph given that there are 6 people (including you).
Let us consider that there are N people and N different positions. We can place first person in any one of the N places. Now, we have $\left( N-1 \right)$ places. We can place the second person in any of these $\left( N-1 \right)$ places. Therefore, the number of available places for the first two people can be written as $N\left( N-1 \right)$ .Now, we have $\left( N-2 \right)$ places. We can place the third person in $\left( N-2 \right)$ places. Hence, the number of available places for the first three people can be written as \[N\left( N-1 \right)\left( N-2 \right)\] . We can do this till all the places are filled. Let us denote this as \[N\times \left( N-1 \right)\times \left( N-2 \right)...\times 1=N!\] .
Now, we have to place six people in six positions. Similar to the above explained logic, we can do this in $6!$ ways.
$6!=6\times 5\times 4\times 3\times 2\times 1=720$
Hence, the answer is 720 ways.
Note: We can also denote the number of ways in which you can pose in a line of photograph, in terms of permutation. We can write it as $^{6}{{P}_{6}}$ . That is, there are 6 people and we have to place them in 6 positions. We know that $^{n}{{P}_{n}}=n!$ . Hence we will get 6! ways. The permutation formula is given as $^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ . We use permutation here rather than combination because permutation is several ways of arranging few or all members within a specific order, whereas combination is a process of selecting the objects from a set or the collection of objects, such that the order of selection of objects does not matter. It refers to the combination of N things taken from a group of K at a time without repetition.
Complete step by step solution:
We need to find out how many ways you can pose in a line for a photograph given that there are 6 people (including you).
Let us consider that there are N people and N different positions. We can place first person in any one of the N places. Now, we have $\left( N-1 \right)$ places. We can place the second person in any of these $\left( N-1 \right)$ places. Therefore, the number of available places for the first two people can be written as $N\left( N-1 \right)$ .Now, we have $\left( N-2 \right)$ places. We can place the third person in $\left( N-2 \right)$ places. Hence, the number of available places for the first three people can be written as \[N\left( N-1 \right)\left( N-2 \right)\] . We can do this till all the places are filled. Let us denote this as \[N\times \left( N-1 \right)\times \left( N-2 \right)...\times 1=N!\] .
Now, we have to place six people in six positions. Similar to the above explained logic, we can do this in $6!$ ways.
$6!=6\times 5\times 4\times 3\times 2\times 1=720$
Hence, the answer is 720 ways.
Note: We can also denote the number of ways in which you can pose in a line of photograph, in terms of permutation. We can write it as $^{6}{{P}_{6}}$ . That is, there are 6 people and we have to place them in 6 positions. We know that $^{n}{{P}_{n}}=n!$ . Hence we will get 6! ways. The permutation formula is given as $^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ . We use permutation here rather than combination because permutation is several ways of arranging few or all members within a specific order, whereas combination is a process of selecting the objects from a set or the collection of objects, such that the order of selection of objects does not matter. It refers to the combination of N things taken from a group of K at a time without repetition.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

