Yash scored $40$ marks in a test, getting $3$ marks for each right answer and losing $1$ mark for each wrong answer. Had $4$ marks been awarded for each correct answer and $2$ marks been deducted for each incorrect answer, then Yash would have scored $50$ marks. How many questions were there in the test?
${\text{A}}{\text{.}}$ 20 Questions
${\text{B}}{\text{.}}$ 40 Questions
${\text{C}}{\text{.}}$ 50 Questions
${\text{D}}{\text{.}}$ 15 Questions
Last updated date: 15th Mar 2023
•
Total views: 303.3k
•
Views today: 6.83k
Answer
303.3k+ views
Hint – try to solve these questions with the help of linear equations and compare them both.
Complete step-by-step solution -
According to the question, let the right answer be $x$ and the number of wrong questions as $y$
Now as per the question,
$
\Rightarrow 3x - y = 40....\left( i \right) \\
\Rightarrow 4x - 2y = 50....\left( {ii} \right) \\
$
Now multiplying $\left( i \right)$ by $\left( {2} \right)$ and subtracting $\left( {ii} \right)$ from $\left( i \right)$ will get,
$
\Rightarrow 6x - 2y - 4x + 2y = 80 - 50 \\
\Rightarrow 2x = 30 \\
\Rightarrow x = 15 \\
$
Now putting in $x$ in $\left( i \right)$ will get,
$
\Rightarrow 3 \times 15 - y = 40 \\
\Rightarrow 45 - y = 40 \\
\Rightarrow - y = 40 - 45 \\
$
Now cancelling out the same signs we will get,
$y = 5$
So correct answer $ = 15$, wrong answer $ = 5$
Total question $ = x + y = 15 + 5 = 20 $ questions
So, the option “A” is correct.
Note- Use of linear equations in solving such questions will be helpful. In mathematics, a linear equation is an equation that may be put in the form where the variables are, and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables.
Complete step-by-step solution -
According to the question, let the right answer be $x$ and the number of wrong questions as $y$
Now as per the question,
$
\Rightarrow 3x - y = 40....\left( i \right) \\
\Rightarrow 4x - 2y = 50....\left( {ii} \right) \\
$
Now multiplying $\left( i \right)$ by $\left( {2} \right)$ and subtracting $\left( {ii} \right)$ from $\left( i \right)$ will get,
$
\Rightarrow 6x - 2y - 4x + 2y = 80 - 50 \\
\Rightarrow 2x = 30 \\
\Rightarrow x = 15 \\
$
Now putting in $x$ in $\left( i \right)$ will get,
$
\Rightarrow 3 \times 15 - y = 40 \\
\Rightarrow 45 - y = 40 \\
\Rightarrow - y = 40 - 45 \\
$
Now cancelling out the same signs we will get,
$y = 5$
So correct answer $ = 15$, wrong answer $ = 5$
Total question $ = x + y = 15 + 5 = 20 $ questions
So, the option “A” is correct.
Note- Use of linear equations in solving such questions will be helpful. In mathematics, a linear equation is an equation that may be put in the form where the variables are, and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
