
How do you write\[\;y = 4x - 11\] in standard form?
Answer
537.9k+ views
Hint: Here in this given equation is a linear equation. we have to write the given equation in the standard form of a linear equation\[Ax + By = C\]. By simplifying the basic arithmetic operation i.e., addition, subtraction and multiplication we get the required solution for the above equation.
Complete step-by-step solution:
The given equation is a linear equation. These equations are defined for lines in the coordinate system. An equation for a straight line is called a linear equation i.e., \[y = mx + b\], where m is the slope and b is the y-intercept. Occasionally, this equation is called a "linear equation of two variables," where y and x are the variables. The general or standard representation of the straight-line equation is \[Ax + By = C\], it involves only a constant term and a first-order (linear) term.
Consider the given equation
\[ \Rightarrow \,\,\,\,\;y = 4x - 11\]
Move all terms containing variables to the left side of the equation. i.e., we have to shift the variable x and its coefficient to the LHS, by subtract -4x on both sides, then
\[ \Rightarrow \,\,\,\,\;y - 4x = 4x - 11 - 4x\]
On simplification we get
\[ \Rightarrow \,\,\,\,\;y - 4x = - 11\]
Multiply both sides by -1.
\[ \Rightarrow \,\,\,\,\; - 1\left( {y - 4x} \right) = - 1\left( { - 11} \right)\]
\[ \Rightarrow \,\,\,\,\; - y + 4x = 11\]
Rewrite the equation with the variables x and y flipped.
\[ \Rightarrow \,\,\,\,\;4x - y = 11\]
Hence, the standard form of the given linear equation \[\;y = 4x - 11\] is \[4x - y = 11\].
Note: The general or standard representation of the straight-line equation is \[Ax + By = C\], it involves only a constant term and a first-order (linear) term. While shifting or transforming the term in the equation we should take care of the sign. Here sign conventions are used in this problem.
Complete step-by-step solution:
The given equation is a linear equation. These equations are defined for lines in the coordinate system. An equation for a straight line is called a linear equation i.e., \[y = mx + b\], where m is the slope and b is the y-intercept. Occasionally, this equation is called a "linear equation of two variables," where y and x are the variables. The general or standard representation of the straight-line equation is \[Ax + By = C\], it involves only a constant term and a first-order (linear) term.
Consider the given equation
\[ \Rightarrow \,\,\,\,\;y = 4x - 11\]
Move all terms containing variables to the left side of the equation. i.e., we have to shift the variable x and its coefficient to the LHS, by subtract -4x on both sides, then
\[ \Rightarrow \,\,\,\,\;y - 4x = 4x - 11 - 4x\]
On simplification we get
\[ \Rightarrow \,\,\,\,\;y - 4x = - 11\]
Multiply both sides by -1.
\[ \Rightarrow \,\,\,\,\; - 1\left( {y - 4x} \right) = - 1\left( { - 11} \right)\]
\[ \Rightarrow \,\,\,\,\; - y + 4x = 11\]
Rewrite the equation with the variables x and y flipped.
\[ \Rightarrow \,\,\,\,\;4x - y = 11\]
Hence, the standard form of the given linear equation \[\;y = 4x - 11\] is \[4x - y = 11\].
Note: The general or standard representation of the straight-line equation is \[Ax + By = C\], it involves only a constant term and a first-order (linear) term. While shifting or transforming the term in the equation we should take care of the sign. Here sign conventions are used in this problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

