Answer

Verified

394.5k+ views

**Hint:**We recall the definition of integers, positive integers and negative integer. We see that the integers that lie between $-3$ and 3 are given by the collection$ -2,-1,0,1,2 $. We check the integers given in each option whether they are negative and whether they belong to the collection to choose the correct options. \[\]

**Complete step-by-step solution**

We know that integers are numbers without fractional parts. We know that the set of integers denoted by letter $Z$ and in list form written with negative integers (integers less than 0), and positive integers (integers greater than 0) as

\[Z=\left\{ ...-3,,-2,-1,0,1,2,3... \right\}\]

We also know that the negative integers represent loan, loss, depth then the positive integers represent deposit, profit, and height respectively. The negative integers are always prefixed by a negative $\left( {}^{'}{{-}^{'}} \right)$ sign. Zero (0) is neither positive nor negative integer.\[\]

We are asked in the question to write two negative integers between $-3$ and 3. The integers that exist between $-3$ and 3 are $-2,-1,0,1,2$. Let us check each option.\[\]

A. Here the given integers are $-4,-5$. We see that both of them are negative but both of them do not appear in the collection$-2,-1,0,1,2$. So option A is incorrect.\[\]

B. Here the given integers are $-2,-1$. We see that both of them are negative and both of them appear in the collection $-2,-1,0,1,2$. So option B is correct.\[\]

C. Here the given integers are $1,2$.We see both of them are positive and hence option C is incorrect. \[\]

D. Here the given integers are $0,-2$. We 0 is not a negative integer. So option D is incorrect.\[\]

**So the only correct option is B.**

**Note:**We note that integers from option C and D though may not be negative they lie in between $-3$ and 3. We can alternatively solve using the absolute value of an integer. The absolute value of an integer $x$ is $\left| x \right|=x$ if $x\ge 0$ and $\left| x \right|=-x$ if $ x < 0 $. If there are two integers $a,b$ the for some integer lying between $a,b$ that is $a\le x\le b$ only when $\left| a \right|\le \left| x \right|\le \left| b \right|$ or $\left| a \right|\ge \left| x \right|\ge \left| b \right|$.

Recently Updated Pages

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

How do you find the general solution to dfracdydx class 12 maths CBSE

Trending doubts

The provincial president of the constituent assembly class 11 social science CBSE

Gersoppa waterfall is located in AGuyana BUganda C class 9 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The hundru falls is in A Chota Nagpur Plateau B Calcutta class 8 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE