
Write the zeroes of the polynomial -${{\text{x}}^2} - {\text{x}} - 6$
A) $4,7$ B) $2, - 4$ C) $3, - 2$ D) $1,7$
Answer
578.4k+ views
Hint: Zeroes of the polynomial are the real values of the variable for which the value of polynomial becomes zero. You can factorize the given polynomial and put the factors equal to zero. Then find the values of the variable x.
Complete step by step answer:
Given polynomial is-${{\text{x}}^2} - {\text{x}} - 6$. Now let f(x) =${{\text{x}}^2} - {\text{x}} - 6$
We have to find the zeroes of the given polynomial. Zeroes of the polynomial are the real values of the variable for which the value of polynomial becomes zero. So to find the zeroes of f(x), put f(x)$ = 0$.
$ \Rightarrow {{\text{x}}^2} - {\text{x}} - 6 = 0$
Now we will factorize the polynomial by splitting the middle term as we can write $ - {\text{x = - 3x + 2x}}$, so we get-
$ \Rightarrow {{\text{x}}^2} - 3{\text{x + 2x - 6 = 0}} \Rightarrow \left( {{{\text{x}}^2} - 3{\text{x}}} \right){\text{ + }}\left( {{\text{2x - 6}}} \right){\text{ = 0}}$
On taking x and $2$ common, we get-
$ \Rightarrow {\text{x}}\left( {{\text{x}} - 3} \right) + 2\left( {{\text{x - 3}}} \right) = 0$
By separating the common factor we get,
$
\Rightarrow \left( {{\text{x - 3}}} \right) \times \left( {{\text{x + 2}}} \right) = 0 \\
\Rightarrow \left( {{\text{x - 3}}} \right) = 0{\text{ or }}\left( {{\text{x + 2}}} \right) = 0 \\
$
Now equating the values of x to zero, find the value of x,
$ \Rightarrow {\text{x}} = 3{\text{ or x = }} - 2$
Therefore, the zeroes of the polynomial ${{\text{x}}^2} - {\text{x}} - 6$ are $ - 2,3$ .
Hence, the answer is ‘C’.
Note: You can also use the formula ${\text{x = }}\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$ to find the zeroes of quadratic polynomial ${\text{a}}{{\text{x}}^2}{\text{ + bx + c}}$. This formula is known as discriminant formula. You just need to put the values and simplify. Here, b=$ - 1$, a=$1$ and c=$ - 6$. On putting these values in formula, we get-
$ \Rightarrow {\text{x}} = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times \left( { - 6} \right)} }}{{2 \times 1}} = \dfrac{{1 \pm \sqrt {1 + 24} }}{2}$
On simplifying we get-
\[
\Rightarrow {\text{x = }}\dfrac{{1 \pm \sqrt {25} }}{2} = \dfrac{{1 \pm 5}}{2} \\
\Rightarrow {\text{x = }}\dfrac{{1 + 5}}{2}{\text{ or x = }}\dfrac{{1 - 5}}{2} \\
\Rightarrow {\text{x = -2 or 3}} \\
\]
Hence we get the same answer.
Complete step by step answer:
Given polynomial is-${{\text{x}}^2} - {\text{x}} - 6$. Now let f(x) =${{\text{x}}^2} - {\text{x}} - 6$
We have to find the zeroes of the given polynomial. Zeroes of the polynomial are the real values of the variable for which the value of polynomial becomes zero. So to find the zeroes of f(x), put f(x)$ = 0$.
$ \Rightarrow {{\text{x}}^2} - {\text{x}} - 6 = 0$
Now we will factorize the polynomial by splitting the middle term as we can write $ - {\text{x = - 3x + 2x}}$, so we get-
$ \Rightarrow {{\text{x}}^2} - 3{\text{x + 2x - 6 = 0}} \Rightarrow \left( {{{\text{x}}^2} - 3{\text{x}}} \right){\text{ + }}\left( {{\text{2x - 6}}} \right){\text{ = 0}}$
On taking x and $2$ common, we get-
$ \Rightarrow {\text{x}}\left( {{\text{x}} - 3} \right) + 2\left( {{\text{x - 3}}} \right) = 0$
By separating the common factor we get,
$
\Rightarrow \left( {{\text{x - 3}}} \right) \times \left( {{\text{x + 2}}} \right) = 0 \\
\Rightarrow \left( {{\text{x - 3}}} \right) = 0{\text{ or }}\left( {{\text{x + 2}}} \right) = 0 \\
$
Now equating the values of x to zero, find the value of x,
$ \Rightarrow {\text{x}} = 3{\text{ or x = }} - 2$
Therefore, the zeroes of the polynomial ${{\text{x}}^2} - {\text{x}} - 6$ are $ - 2,3$ .
Hence, the answer is ‘C’.
Note: You can also use the formula ${\text{x = }}\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$ to find the zeroes of quadratic polynomial ${\text{a}}{{\text{x}}^2}{\text{ + bx + c}}$. This formula is known as discriminant formula. You just need to put the values and simplify. Here, b=$ - 1$, a=$1$ and c=$ - 6$. On putting these values in formula, we get-
$ \Rightarrow {\text{x}} = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times \left( { - 6} \right)} }}{{2 \times 1}} = \dfrac{{1 \pm \sqrt {1 + 24} }}{2}$
On simplifying we get-
\[
\Rightarrow {\text{x = }}\dfrac{{1 \pm \sqrt {25} }}{2} = \dfrac{{1 \pm 5}}{2} \\
\Rightarrow {\text{x = }}\dfrac{{1 + 5}}{2}{\text{ or x = }}\dfrac{{1 - 5}}{2} \\
\Rightarrow {\text{x = -2 or 3}} \\
\]
Hence we get the same answer.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

What is the role of Mahatma Gandhi in national movement

How many hours before the closure of election must class 9 social science CBSE

Distinguish between the following Ferrous and nonferrous class 9 social science CBSE

What is chronic hunger and seasonal hunger

Define development

