Answer
Verified
447.6k+ views
Hint: The sequence of each term gives as many different values.
Our discussion for this sequence is about the first three terms only. Yet the sequence \[{a_n}\] has n number of values, when we put different values to the sequence it gives a different number.
Now, we are going to substitute positive integers for n of order \[1,2,3\] that is \[{a_1},{a_2},{a_3}\].
Complete step-by-step answer:
1) \[{a_n} = 3n + 2\]
Take n values for first three terms
So, \[n = 1,2,3\] we get
If we take \[n = 1\] ,
\[ \Rightarrow {a_1} = 3(1) + 2\]
\[ \Rightarrow {a_1} = 3 + 2\]
\[ \Rightarrow {a_1} = 5\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = 3(2) + 2\]
\[ \Rightarrow {a_2} = 6 + 2\]
\[ \Rightarrow {a_2} = 8\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = 3(3) + 2\]
\[ \Rightarrow {a_3} = 9 + 2\]
\[ \Rightarrow {a_3} = 11\]
Hence we get, \[{a_1} = 5,{a_2} = 8,{a_3} = 11\]
The first three terms for the sequence \[{a_n} = 3n + 2\] is \[5,8,11\]
2) \[{a_n} = {n^2} + 1\]
Take n values for first three terms
So, \[n = 1,2,3\]
If we take \[n = 1\]
\[ \Rightarrow {a_1} = {1^2} + 1\]
\[ \Rightarrow {a_1} = 1 + 1\]
\[ \Rightarrow {a_1} = 2\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = {2^2} + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = {3^2} + 1\]
\[ \Rightarrow {a_3} = 9 + 1\]
\[ \Rightarrow {a_3} = 10\]
Hence we get, \[{a_1} = 2,{a_2} = 5,{a_3} = 10\]
$\therefore $The first three terms for the sequence \[{a_n} = {n^2} + 1\] is \[2,5,10\]
Note:Form the above observation in first sequence \[{a_n} = 3n + 2\]
if n is an odd number, the sequence is odd.
If n is an even number, the sequence is even.
In same way, the sequence \[{a_n} = {n^2} + 1\]
If n is an odd number, the sequence is even.
If n is an even number, the sequence is odd.
Both the sequences have n number of terms, for our convenience we take the first three terms. In some cases, they ask randomly, give value for \[n = 10\] or \[n = 20\] for the sequence, we can find that also by substitution.
Our discussion for this sequence is about the first three terms only. Yet the sequence \[{a_n}\] has n number of values, when we put different values to the sequence it gives a different number.
Now, we are going to substitute positive integers for n of order \[1,2,3\] that is \[{a_1},{a_2},{a_3}\].
Complete step-by-step answer:
1) \[{a_n} = 3n + 2\]
Take n values for first three terms
So, \[n = 1,2,3\] we get
If we take \[n = 1\] ,
\[ \Rightarrow {a_1} = 3(1) + 2\]
\[ \Rightarrow {a_1} = 3 + 2\]
\[ \Rightarrow {a_1} = 5\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = 3(2) + 2\]
\[ \Rightarrow {a_2} = 6 + 2\]
\[ \Rightarrow {a_2} = 8\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = 3(3) + 2\]
\[ \Rightarrow {a_3} = 9 + 2\]
\[ \Rightarrow {a_3} = 11\]
Hence we get, \[{a_1} = 5,{a_2} = 8,{a_3} = 11\]
The first three terms for the sequence \[{a_n} = 3n + 2\] is \[5,8,11\]
2) \[{a_n} = {n^2} + 1\]
Take n values for first three terms
So, \[n = 1,2,3\]
If we take \[n = 1\]
\[ \Rightarrow {a_1} = {1^2} + 1\]
\[ \Rightarrow {a_1} = 1 + 1\]
\[ \Rightarrow {a_1} = 2\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = {2^2} + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = {3^2} + 1\]
\[ \Rightarrow {a_3} = 9 + 1\]
\[ \Rightarrow {a_3} = 10\]
Hence we get, \[{a_1} = 2,{a_2} = 5,{a_3} = 10\]
$\therefore $The first three terms for the sequence \[{a_n} = {n^2} + 1\] is \[2,5,10\]
Note:Form the above observation in first sequence \[{a_n} = 3n + 2\]
if n is an odd number, the sequence is odd.
If n is an even number, the sequence is even.
In same way, the sequence \[{a_n} = {n^2} + 1\]
If n is an odd number, the sequence is even.
If n is an even number, the sequence is odd.
Both the sequences have n number of terms, for our convenience we take the first three terms. In some cases, they ask randomly, give value for \[n = 10\] or \[n = 20\] for the sequence, we can find that also by substitution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE